• Title/Summary/Keyword: Hadoop, Spark

Search Result 50, Processing Time 0.027 seconds

Predictive Analysis of Financial Fraud Detection using Azure and Spark ML

  • Priyanka Purushu;Niklas Melcher;Bhagyashree Bhagwat;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • v.28 no.4
    • /
    • pp.308-319
    • /
    • 2018
  • This paper aims at providing valuable insights on Financial Fraud Detection on a mobile money transactional activity. We have predicted and classified the transaction as normal or fraud with a small sample and massive data set using Azure and Spark ML, which are traditional systems and Big Data respectively. Experimenting with sample dataset in Azure, we found that the Decision Forest model is the most accurate to proceed in terms of the recall value. For the massive data set using Spark ML, it is found that the Random Forest classifier algorithm of the classification model proves to be the best algorithm. It is presented that the Spark cluster gets much faster to build and evaluate models as adding more servers to the cluster with the same accuracy, which proves that the large scale data set can be predictable using Big Data platform. Finally, we reached a recall score with 0.73, which implies a satisfying prediction quality in predicting fraudulent transactions.

K Nearest Neighbor Joins for Big Data Processing based on Spark (Spark 기반 빅데이터 처리를 위한 K-최근접 이웃 연결)

  • JIAQI, JI;Chung, Yeongjee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1731-1737
    • /
    • 2017
  • K Nearest Neighbor Join (KNN Join) is a simple yet effective method in machine learning. It is widely used in small dataset of the past time. As the number of data increases, it is infeasible to run this model on an actual application by a single machine due to memory and time restrictions. Nowadays a popular batch process model called MapReduce which can run on a cluster with a large number of computers is widely used for large-scale data processing. Hadoop is a framework to implement MapReduce, but its performance can be further improved by a new framework named Spark. In the present study, we will provide a KNN Join implement based on Spark. With the advantage of its in-memory calculation capability, it will be faster and more effective than Hadoop. In our experiments, we study the influence of different factors on running time and demonstrate robustness and efficiency of our approach.

Performance Comparison of Spatial Split Algorithms for Spatial Data Analysis on Spark (Spark 기반 공간 분석에서 공간 분할의 성능 비교)

  • Yang, Pyoung Woo;Yoo, Ki Hyun;Nam, Kwang Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • In this paper, we implement a spatial big data analysis prototype based on Spark which is an in-memory system and compares the performance by the spatial split algorithm on this basis. In cluster computing environments, big data is divided into blocks of a certain size order to balance the computing load of big data. Existing research showed that in the case of the Hadoop based spatial big data system, the split method by spatial is more effective than the general sequential split method. Hadoop based spatial data system stores raw data as it is in spatial-divided blocks. However, in the proposed Spark-based spatial analysis system, there is a difference that spatial data is converted into a memory data structure and stored in a spatial block for search efficiency. Therefore, in this paper, we propose an in-memory spatial big data prototype and a spatial split block storage method. Also, we compare the performance of existing spatial split algorithms in the proposed prototype. We presented an appropriate spatial split strategy with the Spark based big data system. In the experiment, we compared the query execution time of the spatial split algorithm, and confirmed that the BSP algorithm shows the best performance.

Performance Factor of Distributed Processing of Machine Learning using Spark (스파크를 이용한 머신러닝의 분산 처리 성능 요인)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 2021
  • In this paper, we study performance factor of machine learning in the distributed environment using Apache Spark and presents an efficient distributed processing method through experiments. This work firstly presents performance factor when performing machine learning in a distributed cluster by classifying cluster performance, data size, and configuration of spark engine. In addition, performance study of regression analysis using Spark MLlib running on the Hadoop cluster is performed while changing the configuration of the node and the Spark Executor. As a result of the experiment, it was confirmed that the effective number of executors was affected by the number of data blocks, but depending on the cluster size, the maximum and minimum values were limited by the number of cores and the number of worker nodes, respectively.

A performance comparison for Apache Spark platform on environment of limited memory (제한된 메모리 환경에서의 아파치 스파크 성능 비교)

  • Song, Jun-Seok;Kim, Sang-Young;Lee, Jung-June;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.67-68
    • /
    • 2016
  • 최근 빅 데이터를 이용한 시스템들이 여러 분야에서 활발히 이용되기 시작하면서 대표적인 빅데이터 저장 및 처리 플랫폼인 하둡(Hadoop)의 기술적 단점을 보완할 수 있는 다양한 분산 시스템 플랫폼이 등장하고 있다. 그 중 아파치 스파크(Apache Spark)는 하둡 플랫폼의 속도저하 단점을 보완하기 위해 인 메모리 처리를 지원하여 대용량 데이터를 효율적으로 처리하는 오픈 소스 분산 데이터 처리 플랫폼이다. 하지만, 아파치 스파크의 작업은 메모리에 의존적이므로 제한된 메모리 환경에서 전체 작업 성능은 급격히 낮아진다. 본 논문에서는 메모리 용량에 따른 아파치 스파크 성능 비교를 통해 아파치 스파크 동작을 위해 필요한 적정 메모리 용량을 확인한다.

  • PDF

High Rate Denial-of-Service Attack Detection System for Cloud Environment Using Flume and Spark

  • Gutierrez, Janitza Punto;Lee, Kilhung
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.675-689
    • /
    • 2021
  • Nowadays, cloud computing is being adopted for more organizations. However, since cloud computing has a virtualized, volatile, scalable and multi-tenancy distributed nature, it is challenging task to perform attack detection in the cloud following conventional processes. This work proposes a solution which aims to collect web server logs by using Flume and filter them through Spark Streaming in order to only consider suspicious data or data related to denial-of-service attacks and reduce the data that will be stored in Hadoop Distributed File System for posterior analysis with the frequent pattern (FP)-Growth algorithm. With the proposed system, we can address some of the difficulties in security for cloud environment, facilitating the data collection, reducing detection time and consequently enabling an almost real-time attack detection.

SSQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark SQL (SSQUSAR : Apache Spark SQL을 이용한 대용량 정성 공간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-116
    • /
    • 2017
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner, which can derive new qualitative spatial knowledge representing both topological and directional relationships between two arbitrary spatial objects in efficient way using Aparch Spark SQL. Apache Spark SQL is well known as a distributed parallel programming environment which provides both efficient join operations and query processing functions over a variety of data in Hadoop cluster computer systems. In our spatial reasoner, the overall reasoning process is divided into 6 jobs such as knowledge encoding, inverse reasoning, equal reasoning, transitive reasoning, relation refining, knowledge decoding, and then the execution order over the reasoning jobs is determined in consideration of both logical causal relationships and computational efficiency. The knowledge encoding job reduces the size of knowledge base to reason over by transforming the input knowledge of XML/RDF form into one of more precise form. Repeat of the transitive reasoning job and the relation refining job usually consumes most of computational time and storage for the overall reasoning process. In order to improve the jobs, our reasoner finds out the minimal disjunctive relations for qualitative spatial reasoning, and then, based upon them, it not only reduces the composition table to be used for the transitive reasoning job, but also optimizes the relation refining job. Through experiments using a large-scale benchmarking spatial knowledge base, the proposed reasoner showed high performance and scalability.

SPQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark (SPQUSAR : Apache Spark를 이용한 대용량의 정성적 공간 추론기)

  • Kim, Jongwhan;Kim, Jonghoon;Kim, Incheol
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.774-779
    • /
    • 2015
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner using Apache Spark, an in-memory high speed cluster computing environment, which is effective for sequencing and iterating component reasoning jobs. The proposed reasoner can not only check the integrity of a large-scale spatial knowledge base representing topological and directional relationships between spatial objects, but also expand the given knowledge base by deriving new facts in highly efficient ways. In general, qualitative reasoning on topological and directional relationships between spatial objects includes a number of composition operations on every possible pair of disjunctive relations. The proposed reasoner enhances computational efficiency by determining the minimal set of disjunctive relations for spatial reasoning and then reducing the size of the composition table to include only that set. Additionally, in order to improve performance, the proposed reasoner is designed to minimize disk I/Os during distributed reasoning jobs, which are performed on a Hadoop cluster system. In experiments with both artificial and real spatial knowledge bases, the proposed Spark-based spatial reasoner showed higher performance than the existing MapReduce-based one.

LDBAS: Location-aware Data Block Allocation Strategy for HDFS-based Applications in the Cloud

  • Xu, Hua;Liu, Weiqing;Shu, Guansheng;Li, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.204-226
    • /
    • 2018
  • Big data processing applications have been migrated into cloud gradually, due to the advantages of cloud computing. Hadoop Distributed File System (HDFS) is one of the fundamental support systems for big data processing on MapReduce-like frameworks, such as Hadoop and Spark. Since HDFS is not aware of the co-location of virtual machines in the cloud, the default scheme of block allocation in HDFS does not fit well in the cloud environments behaving in two aspects: data reliability loss and performance degradation. In this paper, we present a novel location-aware data block allocation strategy (LDBAS). LDBAS jointly optimizes data reliability and performance for upper-layer applications by allocating data blocks according to the locations and different processing capacities of virtual nodes in the cloud. We apply LDBAS to two stages of data allocation of HDFS in the cloud (the initial data allocation and data recovery), and design the corresponding algorithms. Finally, we implement LDBAS into an actual Hadoop cluster and evaluate the performance with the benchmark suite BigDataBench. The experimental results show that LDBAS can guarantee the designed data reliability while reducing the job execution time of the I/O-intensive applications in Hadoop by 8.9% on average and up to 11.2% compared with the original Hadoop in the cloud.

Scalable Ontology Reasoning Using GPU Cluster Approach (GPU 클러스터 기반 대용량 온톨로지 추론)

  • Hong, JinYung;Jeon, MyungJoong;Park, YoungTack
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • In recent years, there has been a need for techniques for large-scale ontology inference in order to infer new knowledge from existing knowledge at a high speed, and for a diversity of semantic services. With the recent advances in distributed computing, developments of ontology inference engines have mostly been studied based on Hadoop or Spark frameworks on large clusters. Parallel programming techniques using GPGPU, which utilizes many cores when compared with CPU, is also used for ontology inference. In this paper, by combining the advantages of both techniques, we propose a new method for reasoning large RDFS ontology data using a Spark in-memory framework and inferencing distributed data at a high speed using GPGPU. Using GPGPU, ontology reasoning over high-capacity data can be performed as a low cost with higher efficiency over conventional inference methods. In addition, we show that GPGPU can reduce the data workload on each node through the Spark cluster. In order to evaluate our approach, we used LUBM ranging from 10 to 120. Our experimental results showed that our proposed reasoning engine performs 7 times faster than a conventional approach which uses a Spark in-memory inference engine.