• Title/Summary/Keyword: Hadamard Product

Search Result 81, Processing Time 0.016 seconds

APPLICATION OF CONVOLUTION THEORY ON NON-LINEAR INTEGRAL OPERATORS

  • Devi, Satwanti;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.409-445
    • /
    • 2016
  • The class $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ defined in the domain ${\mid}z{\mid}$ < 1 satisfying $Re\;e^{i{\phi}}\((1-{\alpha}+2{\gamma})(f/z)^{\delta}+\({\alpha}-3{\gamma}+{\gamma}\[1-1/{\delta})(zf^{\prime}/f)+1/{\delta}\(1+zf^{\prime\prime}/f^{\prime}\)\]\)(f/z)^{\delta}(zf^{\prime}/f)-{\beta}\)$ > 0, with the conditions ${\alpha}{\geq}0$, ${\beta}$ < 1, ${\gamma}{\geq}0$, ${\delta}$ > 0 and ${\phi}{\in}{\mathbb{R}}$ generalizes a particular case of the largest subclass of univalent functions, namely the class of $Bazilevi{\check{c}}$ functions. Moreover, for 0 < ${\delta}{\leq}{\frac{1}{(1-{\zeta})}}$, $0{\leq}{\zeta}$ < 1, the class $C_{\delta}({\zeta})$ be the subclass of normalized analytic functions such that $Re(1/{\delta}(1+zf^{\prime\prime}/f^{\prime})+1-1/{\delta})(zf^{\prime}/f))$ > ${\zeta}$, ${\mid}z{\mid}$<1. In the present work, the sucient conditions on ${\lambda}(t)$ are investigated, so that the non-linear integral transform $V^{\delta}_{\lambda}(f)(z)=\({\large{\int}_{0}^{1}}{\lambda}(t)(f(tz)/t)^{\delta}dt\)^{1/{\delta}}$, ${\mid}z{\mid}$ < 1, carries the fuctions from $\mathcal{W}^{\delta}_{\beta}({\alpha},{\gamma})$ into $C_{\delta}({\zeta})$. Several interesting applications are provided for special choices of ${\lambda}(t)$. These results are useful in the attempt to generalize the two most important extremal problems in this direction using duality techniques and provide scope for further research.