• Title/Summary/Keyword: HadGEM2

Search Result 93, Processing Time 0.028 seconds

Analysis of Water Quality Impact of Hapcheon Dam Reservoir According to Changes in Watershed Runoff Using ANN (ANN을 활용한 유역유출 변화에 따른 합천댐 저수지 수질영향 분석)

  • Jo, Bu Geon;Jung, Woo Suk;Lee, Jong Moon;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.25-37
    • /
    • 2022
  • Climate change is becoming increasingly unpredictable. This has led to changes in various systems such as ecosystems, human life and hydrological cycles. In particular, the recent unpredictable climate change frequently causes extreme droughts and torrential rains, resulting in complex water resources disasters that cause water pollution due to inundation and retirement rather than primary disasters. SWAT was used as a watershed model to analyze future runoff and pollutant loads. The climate scenario analyzed the RCP4.5 climate scenario of the Meteorological Agency standard scenario (HadGEM3-RA) using the normal quantitative mapping method. Runoff and pollutant load analysis were performed by linkage simulation of climate scenario and watershed model. Finally, the results of application and verification of linkage model and analysis of future water quality change due to climate change were presented. In this study, we simulated climate change scenarios using artificial neural networks, analyzed changes in water temperature and turbidity, and compared the results of dams with artificial neural network results through W2 model, a reservoir water quality model. The results of this study suggest the possibility of applying the nonlinearity and simplicity of neural network model to Hapcheon dam water quality prediction using climate change.

Antitank Mine Detection with Geophysical Prospecting (물리탐사를 이용한 대전차 지뢰 탐지)

  • Cho, Seong-Jun;Kim, Jung-ho;Son, Jeong-Sul;Bang, Eun-Seok;Kim, Jong-Wook
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.219-224
    • /
    • 2007
  • We conducted geophysical surveys to detect antitank mine at Namji-eup, Gyeongsangnam-do which had been installed during Korean war. The surveys consisted of 2 stages, at the first stage we divided the survey area into 7 block and carried out magnetic gradient survey and GEM-3 EM survey sequentially for each block. Hence we verified anomaly areas using an excavator and a metal detector. Most of anomalies were found to be garbages such as trash cans, metallic wastes, and so on. And also, the concrete pipe was found at depth of 1 m, which had not referred in any report of that area. At the second stage, after trenching the covered soil down to 75 cm the same surveys were conducted. We could not find the strong signal to be inferred from a antitank mine, but we pointed out some anomalies to need careful handling because demining is very dangerous work even though there is few possibility that is mine.

  • PDF

Ecohydrological Effects of Climate and Land-Use Changes in Jeju Island using Ecosystem Demography Model (ED 모형을 활용한 제주도의 기후 변화 및 토지 이용 변화의 생태수문학적 영향)

  • Kim, Jeongbin;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.107-107
    • /
    • 2018
  • 기후 변화가 심해짐에 따라 한반도의 기후 또한 온대에서 아열대로 변화하고 있다. 기후대가 변하게 되면 수문학적 순환 및 식생의 분포 또한 달라지게 된다. 식생의 분포는 결국 토지 이용을 의미하며, 서로 다른 토지 이용은 대기와의 상호작용을 통해 각기 다른 반응을 보이게 된다. 본 연구에서는 기후대가 가장 빠르게 변화하고 있는 제주도를 대상으로 기후 변화 및 토지 이용 변화에 따른 생태수문학적 영향을 Ecosystem Demography Model version 2.2(ED-2.2) 모형을 사용하여 살펴 본다. 제주도의 플럭스 타워 및 산림 조사 자료를 활용하여 ED-2.2 모형을 검증하였다. CRU-NCEP 기상자료 및 Land-Use Harmonization (LUH) 토지이용자료를 활용하여 과거기간(1500~2015)의 잠재 식생 및 실제 식생 상태를 산정하고 그 차이를 분석하였다. 산정된 최종 실제 식생 상태를 바탕으로 기후 및 토지이용 시나리오(RCP 3.0 및 6.0)를 적용하고, 다양한 전지구모형(GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5)의 기상자료에 따라 물 순환, 탄소 순환 및 식생의 분포가 어떻게 달라지는 지 분석한다.

  • PDF

Predicting the Changes in Cultivation Areas of Walnut Trees (Juglans sinensis) in Korea Due to Climate Change Impacts (기후변화 영향에 따른 호두나무 재배지역 변화 예측)

  • Lee, Sang-Hyuk;Lee, Peter Sang-Hoon;Lee, Sol Ae;Ji, Seung-Yong;Choi, Jaeyong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.399-410
    • /
    • 2015
  • The objective of our study was to predict future cultivation areas for walnut trees (Juglans sinensis), using the cultivation suitability map provided from Korea Forest Service and MaxEnt modelling under future climate conditions. The climate conditions in 2050s and 2070s were computed using the Regional Climate Prediction (RCP) 4.5 and 8.5 scenarios with the HadGEM2-AO model. As a result, compared to the present area, the cultivation area of the western Korea including Chungcheongnamdo, Jeollabuk-do, Jeollanam-do decreased on a national scale under RCP 4.5, and those of Gyeongsangbukdo and part of Gyeongsangnam-do decreased under RCP 8.5. However, Gangwon-do which is located in higher altitude over 600 meters than other regions showed increases in cultivation areas of 18.3% under RCP 4.5 and of 56.6% under RCP 8.5 by 2070s. The predicted map showed large regional variations in the cultivation areas with climate change. From the analysis of current top ranking areas, the cultivation areas in Gimcheon-si and Yeongdong-gun dramatically decreased by 2070s under RCP 4.5 and 8.5; that of Gongju-si decreased more under RCP 4.5; and those of Muju-gun and Cheonan-si sustained the areas by 2070s under both scenarios. The results from this study can be helpful for providing a guide for minimizing the loss of walnut production and proactively improving productivity and quality of walnuts with regard to unavoidable climate change in South Korea.

A study on the variation of design flood due to climate change in the ungauged urban catchment (기후변화에 따른 미계측 도시유역의 확률홍수량 변화에 관한 연구)

  • Hwang, Jeongyoon;Ahn, Jeonghwan;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.395-404
    • /
    • 2018
  • This research evaluated the change in rainfall quantile during S1, S2, and S3 by using Representative Concentration Pathways (RCP) 4.5 climate scenario HadGEM3-RA Regional Climate Model (RCM) produced by downscaling and bias correlation compared to the past standard observation data S0. Also, the maximum flood peak volume and flood area were calculated by using the urban runoff model and the impact of climate change was analyzed in each period. For this purpose, Gumbel distribution was used as an appropriate model based on the method of maximum likelihood. As a result, in the case of the 10 year-frequency which is the design of most urban drainage facilities, the rainfall quantile is in increased about 10% if we assume 50 years from now with the $3^{rd}$ quarter value and about 20% if we assume 70 years from now. This result implies that the installed urban drainage facility based on the currently set design flood volume cannot be met the design criteria in the future. Therefore, it is necessary to reflect future climate conditions to current urban drainage facilities.

Water Supply Change Outlook for Geum River Basin Considering RCP Climate Change Scenario (RCP 기후변화 시나리오를 고려한 금강유역의 미래 용수공급 변화전망)

  • No, Sun-Hee;Jung, Kwan Sue;Park, Jin Hyeog;Ryoo, Kyong Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.505-517
    • /
    • 2013
  • In this study, water supply for Geum River Basin was calculated by regulating the future water supply of Dam with the future expected discharges. HadGEM2-AO, which is the climate change prediction model that KMA (Korea Meteorological Administration) recently introduced was used for this study. The data of weather stations within the Geum River basin was extracted with the new Greenhouse Gas RCP scenario. The runoff of Geum river basin was simulated using the ArcSWAT for the 1988~2010 period. After validating the model, the similarity of results between simulation and observation at the Yongdam Dam and Daecheong Dam was 92.25% and 95.40%, respectively, which shows a good agreement with observed data. As the result of analysis for the discharges, the discharges would increase 47.76% under the RCP4.5 scenario and 36.52% under the RCP8.5 scenario. Water balance analysis was conducted by the KModSim for predicting the water supply under the runoff variation. We analyzed the volume of water intake with national standard of water supply 95% by Dam Operation Manual. By the analysis under RCP4.5 scenario, $9.41m^3/s$, $24.82m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam. By the analysis under the RCP8.5 scenario, $6.48m^3/s$, $21.08m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam.

Application and evaluation of improving techniques for watershed water cycle to adapt climate change (Gyeongan-Cheon) (기후변화 적응 유역 물순환 개선 기술 적용 및 평가 (경안천))

  • Jang, Cheol Hee;Kim, Hyeon Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.461-461
    • /
    • 2017
  • 기후변화 적응 유역 물순환 개선 기술은 기후변화가 진행 중에 있거나 예상되는 지역에 대하여 강우-유출수를 지연, 저류, 침투시켜 지속가능한 물순환체계를 유지 회복하도록 하는 기술이라 할 수 있다. 본 연구에서는 기후변화에 따른 국내 유역의 특성 및 기후를 반영하기 수월한 물순환 개선 및 평가시스템을 국내 기술로 개발하였다. 개발된 유역 물순환 개선 및 평가시스템은 기존 국가연구개발사업을 통해 개발되고 사업화에 성공한 바 있는 유역 물순환 평가 모형인 CAT(Catchment hydrologic cycle Assessment Tool)을 수정 및 개선하여 기후변화에 따른 영향을 평가하고 적응 대책을 수립하기 위한 실무적인 소프트웨어이다. 침투트렌치, 식생침투트렌치, 습지, 저류지, 빗물탱크 등의 물순환개선시설에 대한 효과를 평가할 수 있도록 개별시설의 제원에 따른 물순환개선 효과를 정량적으로 평가할 수 있다. 본 연구의 대상유역으로는 팔당댐 상류의 경안천 유역을 선정하였다. 경안천 유역의 기후변화에 따른 물순환 개선 기술 적용을 위해서 기후변화 시나리오 자료는 기상청 수원 측후소의 1976~2099년 FGOALS-s2, HadGEM-ES, INM-CM4 RCP8.5 시나리오를 적용하였으며 분석기간은 2020s(2010~2039), 2050s(2040~2069), 2080s(2070~2099)로 구분하였다. Baseline은 수원 측후소 과거 30년 1971~2000년 자료를 이용하였고 각 시나리오별 수문성분 및 구조적 물순환 개선기술 적용에 따른 수문성분을 비교 분석하였다. 물순환 개선기술 시나리오 중 침투시설 시나리오는 도시 면적의 20%, 설계침투량은 일본 우수저류침투기술협회 기준인 단위면적($1m^2$)당 10mm 적용하였고, 빗물저장시설 시나리오의 저장시설의 용량은 수도법시행규칙(2011)의 빗물 이용시설기준(도시면적 ${\times}0.05$)을 적용하였다. 시나리오별 강우량은 HadGEM-ES가 증가폭이 크게 나타났고 INM-CM4는 2080s에서 감소 경향을 보였다. 증발산량은 거의 모든 시나리오에서 대부분 감소하였고, 개선기술 적용에 따라 크게 증가하거나 감소폭이 줄어들었다. 직접유출량 및 중간유출량은 기후변화 시나리오별 강우증가분에 따른 미세한 증가 양상을 보였고, 개선기술 적용에 따라 약간 증가하는 양상을 보였다. 지하수유출량의 경우 침투시설 적용으로 함양량이 크게 증가함에 따라 증가폭이 매우 크게 나타났다.

  • PDF

Analysis of climate change impact on flow duration characteristics in the Mekong River (기후변화에 따른 메콩강 유역의 미래 유황변화 분석)

  • Lee, Daeeop;Lee, Giha;Song, Bonggeun;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to analyze the Mekong River streamflow alteration due to climate change. The future climate change scenarios were produced by bias corrections of the data from East Asia RCP 4.5 and 8.5 scenarios, given by HadGEM3-RA. Then, SWAT model was used for discharge simulation of the Kratie, the main point of the Mekong River (watershed area: $646,000km^2$, 88% of the annual average flow rate of the Mekong River). As a result of the climate change analysis, the annual precipitation of the Kratie upper-watershed increase in both scenarios compared to the baseline yearly average precipitation. The monthly precipitation increase is relatively large from June to November. In particular, precipitation fluctuated greatly in the RCP 8.5 rather than RCP 4.5. Monthly average maximum and minimum temperature are predicted to be increased in both scenarios. As well as precipitation, the temperature increase in RCP 8.5 scenarios was found to be more significant than RCP 4.5. In addition, as a result of the duration curve comparison, the streamflow variation will become larger in low and high flow rate and the drought will be further intensified in the future.

Assessment of Future Agricultural Land Use and Climate Change Impacts on Irrigation Water Requirement Considering Greenhouse Cultivation (시설재배를 고려한 미래 농지이용 변화와 기후변화가 관개 필요수량에 미치는 영향 평가)

  • SON, Moo-Been;HAN, Dae-Young;KIM, Jin-Uk;SHIN, Hyung-Jin;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.120-139
    • /
    • 2020
  • This study is to assess the future agricultural land use and climate change impacts on irrigation water requirement using CLUE-s(Conversion of Land Use and its Effects at Small regional extent) and RCP(Representative Concentration Pathway) 4.5 and 8.5 HadGEM3-RA(Hadley Centre Global Environmental Model version 3 Regional Atmosphere) scenario. For Nonsan city(55,517.9ha), the rice paddy, upland crop, and greenhouse cultivation were considered for agricultural land uses and DIROM(Daily Irrigation Reservoir Operation Model) was applied to benefited areas of Tapjeong reservoir (5,713.3ha) for Irrigation Water Requirement(IWR) estimation. For future land use change simulation, the CLUE-s used land uses of 2007, 2013, and 2019 from Ministry of Environment(MOE) and 6 classes(water, urban, rice paddy, upland crop, forest, and greenhouse cultivation). In 2100, the rice paddy and upland crop areas decreased 5.0% and 7.6%, and greenhouse cultivation area increased 24.7% compared to 2013. For the future climate change scenario considering agricultural land use change, the RCP 4.5 and RCP 8.5 2090s(2090~2099) IWR decreased 2.1% and 1.0% for rice paddy and upland crops, and increased 11.4% for greenhouse cultivation compared to pure application of future climate change scenario.

Future Projection of Changes in Extreme Temperatures using High Resolution Regional Climate Change Scenario in the Republic of Korea (고해상도 지역기후변화 시나리오를 이용한 한국의 미래 기온극값 변화 전망)

  • Lee, Kyoung-Mi;Baek, Hee-Jeong;Park, Su-Hee;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.208-225
    • /
    • 2012
  • The spatial characteristics of changes in extreme temperature indices for 2070-2099 relative to 1971-2000 in the Republic of Korea were investigated using daily maximum (Tmax) and minimum (Tmin) temperature data from a regional climate model (HadGEM3-RA) based on the IPCC RCP4.5/8.5 at 12.5km grid spacing and observations. Six temperature-based indices were selected to consider the frequency and intensity of extreme temperature events. For validation during the reference period (1971-2000), the simulated Tmax and Tmin distributions reasonably reproduce annual and seasonal characteristics not only for the relative probability but also the variation range. In the future (2070-2099), the occurrence of summer days (SD) and tropical nights (TR) is projected to be more frequent in the entire region while the occurrence of ice days (ID) and frost days (FD) is likely to decrease. The increase of averaged Tmax above 95th percentile (TX95) and Tmin below 5th percentile (TN5) is also projected. These changes are more pronounced under RCP8.5 scenario than RCP4.5. The changes in extreme temperature indices except for FD show significant correlations with altitude, and the changes in ID, TR, and TN5 also show significant correlations with latitude. The mountainous regions are projected to be more influenced by an increase of low extreme temperature than low altitude while the southern coast is likely to be more influenced by an increase of tropical nights.

  • PDF