• Title/Summary/Keyword: HadGEM2

Search Result 93, Processing Time 0.022 seconds

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed (기후변화와 토지이용변화가 도시화 진행 유역수문에 미치는 영향 평가)

  • Ahn, So Ra;Jang, Cheol Hee;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.567-577
    • /
    • 2015
  • Climate and land use changes have impact on availability water resource by hydrologic cycle change. The purpose of this study is to evaluate the hydrologic behavior by the future potential climate and land use changes in Anseongcheon watershed ($371.1km^2$) using SWAT model. For climate change scenario, the HadGEM-RA (the Hadley Centre Global Environment Model version 3-Regional Atmosphere model) RCP (Representative Concentration Pathway) 4.5 and 8.5 emission scenarios from Korea Meteorological Administration (KMA) were used. The mean temperature increased up to $4.2^{\circ}C$ and the precipitation showed maximum 21.2% increase for 2080s RCP 8.5 scenario comparing with the baseline (1990-2010). For the land use change scenario, the Conservation of Land Use its Effects at Small regional extent (CLUE-s) model was applied for 3 scenarios (logarithmic, linear, exponential) according to urban growth. The 2100 urban area of the watershed was predicted by 9.4%, 20.7%, and 35% respectively for each scenario. As the climate change impact, the evapotranspiration (ET) and streamflow (ST) showed maximum change of 20.6% in 2080s RCP 8.5 and 25.7% in 2080s RCP 4.5 respectively. As the land use change impact, the ET and ST showed maximum change of 3.7% in 2080s logarithmic and 2.9% in 2080s linear urban growth respectively. By the both climate and land use change impacts, the ET and ST changed 19.2% in 2040s RCP 8.5 and exponential scenarios and 36.1% in 2080s RCP 4.5 and linear scenarios respectively. The results of the research are expected to understand the changing water resources of watershed quantitatively by hydrological environment condition change in the future.

Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do (기후변화에 따른 국내 키위 품종 '해금'의 개화시기 변동과 전망에 대한 불확실성: 전남 키위 주산지역을 중심으로)

  • Kim, Kwang-Hyung;Jeong, Yeo Min;Cho, Youn-Sup;Chung, Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • It is highly anticipated that warming temperature resulting from global climate change will affect the phenological pattern of kiwifruit, which has been commercially grown in Korea since the early 1980s. Here, we present the potential impacts of climate change on the variations of flowering day of a gold kiwifruit cultivar, Haegeum, in the Jeonnam Province, Korea. By running six global climate models (GCM), the results from this study emphasize the uncertainty in climate change scenarios. To predict the flowering day of kiwifruit, we obtained three parameters of the 'Chill-day' model for the simulation of Haegeum: $6.3^{\circ}C$ for the base temperature (Tb), 102.5 for chill requirement (Rc), and 575 for heat requirement (Rh). Two separate validations of the resulting 'Chill-day' model were conducted. First, direct comparisons were made between the observed flowering days collected from 25 kiwifruit orchards for two years (2014-15) and the simulated flowering days from the 'Chill-day' model using weather data from four weather stations near the 25 orchards. The estimation error between the observed and simulated flowering days was 5.2 days. Second, the model was simulated using temperature data extracted, for the 25 orchards, from a high-resolution digital temperature map, resulting in the error of 3.4 days. Using the RCP 4.5 and 8.5 climate change scenarios from six GCMs for the period of 2021-40, the future flowering days were simulated with the 'Chill-day' model. The predicted flowering days of Haegeum in Jeonnam were advanced more than 10 days compared to the present ones from multi-model ensemble, while some individual models resulted in quite different magnitudes of impacts, indicating the multi-model ensemble accounts for uncertainty better than individual climate models. In addition, the current flowering period of Haegeum in Jeonnam Province was predicted to expand northward, reaching over Jeonbuk and Chungnam Provinces. This preliminary result will provide a basis for the local impact assessment of climate change as more phenology models are developed for other fruit trees.