• Title/Summary/Keyword: HadCM3 scenarios

Search Result 19, Processing Time 0.031 seconds

Projecting Future Paddy Irrigation Demands in Korea Using High-resolution Climate Simulations (고해상도 기후자료를 이용한 우리나라의 논 관개요구량 예측)

  • Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.169-177
    • /
    • 2011
  • The impacts of climate change on paddy irrigation water demands in Korea have been analyzed. High-resolution ($27{\times}27\;km$) climate data for the SRES A2 scenario produced by the Korean Meteorological Research Institute (METRI) and the observed baseline climatology dataset were used. The outputs from the ECHO-G GCM model were dynamically downscaled using the MM5 regional model by the METRI. The Geographic information system (GIS) was used to produce maps showing the spatial changes in irrigation water requirements for rice paddies. The results showed that the growing season mean temperature for future scenarios was projected to increase by $1.5^{\circ}C$ (2020s), $3.3^{\circ}C$ (2050s) and $5.3^{\circ}C$ (2080s) as compared with the baseline value (1971~2000). The growing season rainfall for future scenarios was projected to increase by 0.1% (2020s), 4.9% (2050s) and 19.3% (2080s). Assuming cropping area and farming practices remain unchanged, the total volumetric irrigation demand was projected to increase by 2.8% (2020s), 4.9% (2050s) and 4.5% (2080s). These projections are contrary to the previous study that used HadCM3 outputs and projected decreasing irrigation demand. The main reason for this discrepancy is the difference with the projected climate of the GCMs used. The temporal and spatial variations were large and should be considered in the irrigation water resource planning and management in the future.

Water Supply Reliability Revaluation For Agricultural Water Supply Pattern Changes Considering Climate Changes (기후변화에 따른 농업용수공급패턴의 변화로 인한 이수안전도변화분석)

  • Choi, Young-Don;Ahn, Jong-Seo;Shin, Hyun-Suk;Cha, Hyung-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.273-277
    • /
    • 2010
  • This research was performed to examine changes in the timing of the growth of crops along with changes in temperatures due tochanges and to analyze the change of water-supply-reliability by adding an analysis of the change of agricultural water supply patterns in the basin area of Miryang dam in Korea. Had-CM3 model from U.K. was the tool adopted for the GCM model, a stochastic, daily-meteorology-generation-model called LARS-WG was alsoused for downscaling and for the climate change scenario (A1B) which represents Korea's circumstances best. First of all, to calculate changes in the timing of the growth of crops during this period, the theory of GDD was applied. Except for the period of transplanting and irrigation, there was no choice but to find the proper accumulated temperature by comparing actual temperature data and the supply pattern of agricultural use due to limited temperature data. As a result, proper temperatures were found for each period. $400^{\circ}C$ for the preparation period of a nursery bed, $704^{\circ}C$ for a nursery bed's period, $1,295^{\circ}C$ for the rice-transplanting period, $1,744^{\circ}C$ for starting irrigation, and $3,972^{\circ}C$ for finishing irrigation. To analyze future agricultural supply patter changes, the A1B scenario of Had-CM3 model was adopted, and then Downscaling was conducted adopting LARS-WG. To conduct a stochastical analysis of LARS-WG, climate scenarios were generated for the periods 2011~2030, 2046~2065, 2080~2099 using the data of precipitation andMax/Min temperatures collected from the Miryang gauging station. Upon reviewing the result of the analysis of accumulated temperatures from 2011~2030, the supply of agricultural water was 10 days earlier, and in the next periods-2046~2065, 2080~2099 it also was 10 days earlier. With these results, it is assumed that the supply of agricultural water should be about 1 month ahead of the existing schedule to meet the proper growth conditions of crops. From the results of the agricultural water supply patterns should be altered, but the reliability of water supply becomes more favorable, which is caused from the high precipitation change. Furthermore, since the unique characteristics of precipitation in Korea, which has high precipitation in the summer, water-supply-reliability has a pattern that the precipitation in September could significantly affect the chances of drought the following winter and spring. It could be more risky to make changes to the constant supply pattern under these conditions due to the high uncertainty of future precipitation. Although, several researches have been conducted concerning climate changes, in the field of water-industry, those researches have been solely dependent on precipitation. Even so, with the high uncertainty of precipitation, it is difficult for it to be reflected in government policy. Therefore, research in the field of water-supply-patterns or evapotranspiration according to the temperature or other diverse effects, which has higher reliability on anticipation, could obtain more reliable results in the future and that could result in water-resource maintenance to be safer and a more advantageous environment.

  • PDF

Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed (장래 기후변화와 토지이용 변화에 따른 농촌소유역의 수문 영향 분석)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Lee, Eun-Jeong;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.75-84
    • /
    • 2011
  • The objective of this study is to evaluate the hydrologic impacts of climate and land use changes in a rural small watershed. HadCM3 (Hadley Centre Coupled Model, ver.3) A2 scenario and LARS-WG (Long Ashton Research Station - Weather Generator) were used to generate future climatic data. Future land use data were also generated by the CA-Markov (Cellular Automata-Markov) method. The Soil and Water Assessment Tool (SWAT) model was used to evaluate hydrologic impacts. The SWAT model was calibrated and validated with stream flow measured at the Baran watershed in Korea. The SWAT model simulation results agreed well with observed values during the calibration and validation periods. In this study, hydrologic impacts were analyzed according to three scenarios: future climate change (Scenario I), future land use change (Scenario II), and both future climate and land use changes (Scenario III). For Scenario I, the comparison results between a 30-year baseline period (1997~2004) and a future 30-year period (2011~2040) indicated that the total runoff, surface runoff, lateral subsurface runoff, groundwater discharge, and evapotranspiration increased as precipitation and temperature for the future 30-year period increased. The monthly variation analysis results showed that the monthly runoff for all months except September increased compared to the baseline period. For Scenario II, both the total and surface runoff increased as the built-up area, including the impervious surface, increased, while the groundwater discharge and evapotranspiration decreased. The monthly variation analysis results indicated that the total runoff increased in the summer season, when the precipitation was concentrated. In Scenario III, the results showed a similar trend to that of Scenario II. The monthly runoff for all months except October increased compared to the baseline period.

Assessment of climate change impact on Hydrology and water quality by snowmelt (기후변화를 고려한 미래 융설이 수문-수질에 미치는 영향 평가)

  • Kim, Saet-Byul;Ha, Rim;Yu, Yung-Seok;Yi, Jae-Eung;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.126-126
    • /
    • 2012
  • 기후변화는 전 세계적으로 다양한 영향을 미치고 있으며 특히, 홍수나 대설로 인한 수문변화에 영향을 준다. 본 연구는 준분포형 연속 모형인 SWAT (Soil and Water Assessment Tool)모형을 이용하여 우리나라 3대 대설지역에 속하는 다목적댐인 충주댐유역(6642.0 m)의 기후변화에 따른 융설이 수문과 수질에 미치는 영향을 분석하고자 한다. 먼저, 융설 모형의 매개변수인 적설분포면적감소곡선 (Snow Cover Depletion Curve; SCDC)을 구축하기 위하여 10년(2000-2010)동안의 Terra MODIS (MODerate resolution Imaging Spectroradiometer) 위성영상자료와 6개 기상관측소(충주, 제천, 원주, 영월, 대관령, 태백)의 최심적설자료를 이용하여 연도별 SCDC을 구축하였다. 구축 결과, 눈이 50% 피복 일 때 snow volume은 연 평균 0.47로 분석되었다. 이를 SWAT 모형에 적용하여 수문과 수질에 대한 적용성 평가를 실시한 결과, 유출의 경우 NSE는 융설기간 동안 평균 0.8, 전체기간은 평균 0.6으로 나타났으며 수질(Sediment, T-N, T-P)의 경우 각각 평균 0.72, 0.70, 0.85을 나타내었다. 미래 기후자료는 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 SRES(Special Report on Emission Scenarios) A1B, B1 기후변화시나리오의 HadCM3 모델의 결과 값을 이용하였으며 기간은 과거 30년 기후자료(1981-2010, baseline)를 바탕으로 2040s(2020-2059), 2080s(2060-2099)의 두 기간으로 나누어 각각 분석하였으며 기후변화 결과 값의 불확실성을 줄이고자 과거 자료와 GCM의 1981년에서 2000년까지의 값을 비교하여 온도와 강수량의 보정을 실시한 후 LARS-WG를 이용하여 온도와 강수량 자료를 구축하였다. SWAT 모형을 적용한 결과, 평균 1.92 증가한 것으로 나타났으며 유출은 융설기간(Nov-Apr)이 비융설기간(May-Oct)보다 10% 더 증가하였다. 본 연구에서는 SWAT 모형을 통한 유출 및 환경부하량 전망을 목표로 하여 미래 기후변화를 고려한 융설이 다목적댐에서의 유출과 수질 (Sediment, Total Nitrogen, Total Phosphorus)에 미치는 영향을 평가해 보고자 한다.

  • PDF

Analysis of Crustal Deformation on the Korea Peninsula after the 2011 Tohoku Earthquake (한반도 지각의 2011 도호쿠 대지진 영향 분석)

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.87-96
    • /
    • 2012
  • The U.S. Geological Survey (USGS) announced that an earthquake of 9.0 magnitude had occurred near the east coast of Japan on March 11, 2011, resulting in a displacement of the crust of about 2.4 meters. The Korean peninsula is located on the Eurasian tectonic plate that stretches out to Japan; therefore, there is a high possibility of being affected by an earthquake. The Korean GPS CORS network operated by the National Geographic Information Institute (NGII) was processed for ten days before and after the earthquake. Both static and kinematic baseline processing were tested for the determination of crustal deformation. The static baseline processing was performed in two scenarios: 1) fixing three IGS stations in China, Mongolia and Russia; 2) fixing SUWN, one of the CORS networks in Korea, in order to effectively verify crustal deformation. All data processing was carried out using Bernese V5.0. The test results show that most of the parts of the Korean peninsula have moved to the east, ranging 1.2 to 5.6 cm, compared to the final solution of the day before the earthquake. The stations, such as DOKD and ULLE that are established on the islands closer to the epicenter, have clearly moved the largest amounts. Furthermore, the station CHJU, located on the southwestern part of Korea, presents relatively small changes. The relative positioning between CORS confirms the fact that there were internal distortions of the Korean peninsula to some extent. In addition, the 30-second interval kinematic processing of CORS data gives an indication of earthquake signals with some delays depending on the distance from the epicenter.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Predicting the Potential Distribution of Korean Pine (Pinus koraiensis) Using an Ensemble of Climate Scenarios (앙상블 기후 시나리오 자료를 활용한 우리나라 잣나무림 분포 적지 전망)

  • Kim, Jaeuk;Jung, Huicheul;Jeon, Seong Woo;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.79-88
    • /
    • 2015
  • Preparations need to be made for Korean pine(Pinus koraiensis) in anticipation of climate change because Korean pine is an endemic species of South Korea and the source of timber and pine nut. Therefore, climate change adaptation policy has been established to conduct an impact assessment on the distribution of Korean pine. Our objective was to predict the distribution of Korean pine while taking into account uncertainty and afforestation conditions. We used the 5th forest types map, a forest site map and BIOCLIM variables. The climate scenarios are RCP 4.5 and RCP 8.5 for uncertainty and the climate models are 5 regional climate models (HadGEM3RA, RegCM4, SNURCM, GRIMs, WRF). The base period for this study is 1971 to 2000. The target periods are the mid-21st century (2021-2050) and the end of the 21st century (2071-2100). This study used the MaxEnt model, and 50% of the presences were randomly set as training data. The remaining 50% were used as test data, and 10 cross-validated replicates were run. The selected variables were the annual mean temperature (Bio1), the precipitation of the wettest month (Bio13) and the precipitation of the driest month (Bio14). The test data's ROC curve of Korean pine was 0.689. The distribution of Korean pine in the mid-21st century decreased from 11.9% to 37.8% on RCP 4.5 and RCP 8.5. The area of Korean pine at an artificial plantation occupied from 32.1% to 45.4% on both RCPs. The areas at the end of the 21st century declined by 53.9% on RCP 4.5 and by 86.0% on RCP 8.5. The area of Korean pine at an artificial plantation occupied 23.8% on RCP 4.5 and 7.2% on RCP 8.5. Private forests showed more of a decrease than national forests for all subsequent periods. Our results may contribute to the establishment of climate change adaptation policies for considering various adaptation options.

Low-Flow Projection according to the Actual Evapotranspiration scenarios under the Climate Change -Chungju Dam Case- (기후변화 실제증발산 시나리오에 따른 갈수량전망 - 충주댐 사례 -)

  • Sun, HoYoung;Kang, BooSik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.104-104
    • /
    • 2018
  • 이수안전도의 기준이 되는 갈수량에 대해 기후변화 시나리오에 따른 전망을 제시하였다. 충주 댐 유역을 대상으로 기준기간(1986~2000년)에서의 기상청의 관측 기상자료와 IPCC 보고서의 RCP 4.5/8.5 시나리오를 대상으로 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 5개의 모델(ACCESS1.3 CanESM2, CNRM-CM5, GFDL-ESM2G, HadGEM2-AO)의 기준기간과 미래기간(2011~2100년)의 기상자료를 수집하였다. 기후변화 자료는 정상성/비정상성 분위사상법과 베이지안 모델 평균기법을 통해 불확실성과 통계적 오차를 저감하였다. 미래기간에서, 강우는 RCP 4.5에서 1.74mm/year, RCP 8.5에서 3.22mm/year, 실제증발산은 RCP 4.5에서 1.09mm/year, RCP 8.5에서 1.78mm/year의 증가율을 보였다. 실제증발산을 입력자료로 활용할 수 있도록 IHACRES모델의 CMD(Catchment Moisture Deficit) 비선형 모듈의 매개변수를 변이하여 유효강우량 산정 과정을 개선하였다. 기준기간에서 관측유량자료와 IHACRES의 시뮬레이션을 통해 산정된 유량자료의 R-squared는 0.65이다. 기준기간에서의 매개변수를 고정하여 미래기간의 유량을 산정하고 유황분석을 통해 갈수량 전망하였다. 유량은 RCP 4.5에서 4.41MCM/year, RCP 8.5에서 9.66MCM/year의 증가율을 보였다. 갈수량은 RCP 4.5에서 0.30MCM/year, RCP 8.5에서 -0.47MCM/year의 증감율을 보였다. 연간 강수량 대비 실제증발산의 비율의 추세분석 결과, RCP 4.5에서는 홍수기에는 0.014%/year, 비홍수기에는 0.027%/year의 증가율을 보이며 거의 변화가 없는 추세를 확인할 수 있었다. RCP 8.5의 홍수기에는 -0.042%/year, 비홍수기에서는 0.167%/year의 증감율을 보이며 홍수기에는 실제증발산에 비해 강수량의 증가가 확연히 보였으며 비홍수기에는 강수량에 비해 실제증발산의 증가가 뚜렷이 확인되었다. RCP 8.5에서 비홍수기의 강수량 대비 실제증발산의 증가가 갈수량의 감소로 반영된 것을 확인할 수 있었다. 미래기간의 RCP 4.5/8.5에서 실제증발산의 증가로 인하여 강수량이 증가함에 따라 유입량이 증가함에도 불구하고 갈수량의 증가로 이어지지 않았다. 미래 갈수량의 감소는 하천의 건전성과 이수안전도의 위협이 될 수 있다.

  • PDF

A Study on the Prediction of Suitability Change of Forage Crop Italian Ryegrass (Lolium multiflorum L.) using Spatial Distribution Model (공간분포모델을 활용한 사료작물 이탈리안 라이그라스(Lolium multiflorum L.)의 재배적지 변동예측연구)

  • Kim, Hyunae;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.103-113
    • /
    • 2014
  • Under climate change, it is likely that the suitable area for forage crop cultivation would change in Korea. The potential cultivation areas for italian ryegrass (Lolium multiflorum L.), which has been considered one of an important forage crop in Korea, were identified using the EcoCrop model. To minimize the uncertainty associated with future projection under climate change, an ensemble approach was attempted using five climate change scenarios as inputs to the EcoCrop model. Our results indicated that most districts had relatively high suitability, e.g., >80, for italian ryegrass in South Korea. Still, suitability of the crop was considerably low in mountainous areas because it was assumed that a given variety of italian ryegrass had limited cold tolerance. It was predicted that suitability of italian ryegrass would increase until 2050s but decrease in 2080s in a relatively large number of regions due to high temperature. In North Korea, suitability of italian ryegrass was considerably low, e.g., 28 on average. Under climate change, however, it was projected that suitability of italian ryegrass would increase until 2080s. For example, suitability of italian ryegrass was more than 80 in 10 districts out of 14 by 2080s. Because cold tolerance of italian ryegrass varieties has been improved, it would be preferable to optimize parameters of the EcoCrop model for those varieties. In addition, it would be possible to grow italian ryegrass as the second crop following rice in Korea in the future. Thus, it merits further study to identify suitable areas for italian ryegrass cultivation after rice using new varieties of italian ryegrass.