• Title/Summary/Keyword: Habitat Classification Map

Search Result 22, Processing Time 0.023 seconds

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.

A Study on the Methodology of Bioregional Approach for Coastal Area Management - Focus on the Case of Bioregional Classification in the Bay of Hampyong - (연안지역관리를 위한 생물지리지역 접근방법에 관한 연구 - 함평만의 생물지리지역 구분사례를 중심으로 -)

  • Kim, Kwi-Gon;Cho, Dong-Gil;Jung, Sung-Eun;Shin, Ji-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.20-28
    • /
    • 2000
  • The objective of this study is to establish a methodology of bioregional approach for coastal area management as a basis for planning and design. Focusing on the bioregional approach, this study reviewed currently prevailing approaches such as watershed approach and ecological unit approach for planning and management purposes. This research placed its geographical focus on the landward watershed of the Bay of Hampyong located in Chonnam Province, dealing efficiently with shortcomings of existing researches which mainly covered seaward tidal flats without considering outside effects. The main methods of the study are classified into indoor computerized map analysis and field work. For computer analysis, printed maps and digital maps have been analysed, and GIS techniques have been utilized for its synthesis and finalizations. Field work included on-site landscape analysis and verification of a tentative place unit boundary. As a practical step, criteria for classifying bioregion were presented and the selected criteria included : topography & water ways ; roads & administrative boundaries ; habitat types ; and visual enclosure. First, based on the data of topography and water ways, broad classification work was performed and corrections were made based on data drawn out from other criteria. A tentative place unit map was drawn and revised through field visits. This study encompassed an initial but integral part for bioregional approach in landward watershed management of a coastal area. As results of the study, the necessity and efficiency of bioregional approach which considers environmental and cultural components systematically have been presented.

  • PDF

Diversity and Distribution of Plant Communities on the Ungok Wetland in Gochang (고창 운곡습지의 식물군락 다양성과 분포 특성)

  • Kim, Jong-won;Lee, Seung-eun;Ryu, Tae-bok
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.295-304
    • /
    • 2017
  • The Ramsar protected area in Ungok wetland, which has been designated since 2011, was described by syntaxonomy and synchorology. Phytocoenon was identified and named by a traditional method of the $Z{\ddot{u}}rich$-Montpellier School and Code of Phytosociological Nomenclature. Habitat-based vegetation classification has identified into twelve syntaxa consisting of 88 taxa in seven vegetation types: Juncus effusus var. decipiens-Salix koreensis community, Caricis-Salicetum subfragilis, Galium spurium var. echinospermon-Phragmites japonica community, Phragmitetum australis, Scirpetum fluviatilis, Leersia japonica-Typha angustifolia community, Juncus diastrophanthus-Juncus effusus var. decipiens community, Leersicetum japonicae, Nymphoido indicae-Trapetum japonicae (typicum, marsiletosum quadrifoliae subass. nova hoc loco, variante Euryale ferox), Nelumbo nucifera community, Utricularia tenuicaulis community, Potamogetonetum crispi. Actual vegetation map was made by using topographical map of scale 1 : 5,000. Habitat-based management on the Ungok wetland vegetation was required, in which there are composed of two major areas such as the back-swamp vegetation and the limnetic vegetation zone.

Distribution of the Kentish Plover (Charadrius Alexandrinus) Based on the 3rd National Ecosystem Survey and Its Adequacy as a Bioindicator (제 3차 전국자연환경조사를 이용한 흰물떼새(Charadrius alexandrinus)의 분포현황과 생물지표종의 제안)

  • Kim, Woo-Yuel;Bae, So-Yeon;Oh, Su-Jeung;Yoon, Hee-Nam;Lee, Jung-Hyo;Paek, Woon-Kee;Sung, Ha-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • In this study we analyzed the spatial and temporal distribution and preferred habitat type of the Kentish plover (Charadrius alexandrinus) based on the 3rd National Ecosystem Survey. Kentish plovers were observed in 97 maps out of a total 842 maps (11.8%) between 2006 and 2012, mainly along the western and southern coasts of Korea. They were also observed in the eastern coast of Korea, inland rivers (Han, Geum, Nakdong, Seomjin, and Yongsan River), the western and eastern coast of Jeju island, and Daecheong Island in the Yellow Sea. The observations were mainly made during the spring breeding season and migration seasons in spring and autumn. The occurrence of kentish plovers was positively influenced by the area of water and wetland according to the middle classification level of land cover type analysis and the area of coastal wetlands in the detailed classification level of land cover types. Most (90%) of the kentish plovers recorded maps had coastal wetlands. Kentish plovers were known to be susceptible to change of habitat. As the occurrence of kentish plovers could be associated with the habitat-change of coastal wetlands and it is possible to estimate the number of individuals, it is recommended that kentish plovers be used as a bioindicator species for the ecological assessment of ecosystem in intertidal zones.

Species Distribution Modeling of Endangered Mammals for Ecosystem Services Valuation - Focused on National Ecosystem Survey Data - (생태계 서비스 가치평가를 위한 멸종위기 포유류의 종분포 연구 - 전국자연환경조사 자료를 중심으로 -)

  • Jeon, Seong Woo;Kim, Jaeuk;Jung, Huicheul;Lee, Woo-Kyun;Kim, Joon-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • The provided habitat of many services from natural capital is important. But because most ecosystem services tools qualitatively evaluated biodiversity or habitat quality, this study quantitatively analyzed those aspects using the species distribution model (MaxEnt). This study used location point data of the goat(Naemorhedus caudatus), marten(Martes flavigula), leopard cat(Prionailurus bengalensis), flying squirrel(Pteromys volans aluco) and otter(Lutra lutra) from the 3rd National Ecosystem Survey. Input data utilized DEM, landcover classification maps, Forest-types map and digital topographic maps. This study generated the MaxEnt model, randomly setting 70% of the presences as training data, with the remaining 30% used as test data, and ran five cross-validated replicates for each model. The threshold indicating maximum training sensitivity plus specificity was considered as a more robust approach, so this study used it to conduct the distribution into presence(1)-absence(0) predictions and totalled up a value of 5 times for uncertainty reduction. The test data's ROC curve of endangered mammals was as follows: growing down goat(0.896), otter(0.857), flying squirrel(0.738), marten(0.725), and leopard cat(0.629). This study was divided into two groups based on habitat: the first group consisted of the goat, marten, leopard cat and flying squirrel in the forest; and the second group consisted of the otter in the river. More than 60 percent of endangered mammals' distribution probability were 56.9% in the forest and 12.7% in the river. A future study is needed to conduct other species' distribution modeling exclusive of mammals and to develop a collection method of field survey data.

Characteristics of Land-use Changes Northern Cheongju Region using Landsat Images and DEM (Landsat영상과 DEM을 이용한 청주북부지역의 토지이용 변화특성)

  • Na, Sang-Il;Park, Jong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.667-672
    • /
    • 2007
  • Land-use in Cheongju region is changing rapidly because of the increased interactions of human activities with the environment as population increases. We used multi-temporal Landsat images (1991 and 2000) and DEM data in a post-classification analysis with GIS to map land-use distribution and to analyse factors influencing the land-use changes for Cheongju City. Land-use statistics revealed that substantial land-use changes have taken place and that the built-up areas have expanded by about $17.57km^2(11.47%)$ over the study period (1991-2000). Agricultural lands and forests have decreased substantially while urban and barren lands have been on the increase. Rapid economic developments together with the increasing population were noted to be the major factors influencing rapid land use changes. Urban expansion has replaced urban and barren lands, thereby affecting habitat quality and leading to serious environmental degradation.

  • PDF

Level 3 Type Land Use Land Cover (LULC) Characteristics Based on Phenological Phases of North Korea (생물계절 상 분석을 통한 Level 3 type 북한 토지피복 특성)

  • Yu, Jae-Shim;Park, Chong-Hwa;Lee, Seung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.457-466
    • /
    • 2011
  • The objectives of this study are to produce level 3 type LULC map and analysis of phenological features of North Korea, ISODATA clustering of the 88scenes of MVC of MODIS NDVI in 2008 and 8scenes in 2009 was carried out. Analysis of phenological phases based mapping method was conducted, In level 2 type map, the confusion matrix was summarized and Kappa coefficient was calculated. Total of 27 typical habitat types that represent the dominant species or vegetation density that cover land surface of North Korea in 2008 were made. The total of 27 classes includes the 17 forest biotopes, 7 different croplands, 2 built up types and one water body. Dormancy phase of winter (${\sigma}^2$ = 0.348) and green up phase in spring (${\sigma}^2$ = 0.347) displays phenological dynamics when much vegetation growth changes take place. Overall accuracy is (851/955) 85.85% and Kappa coefficient is 0.84. Phenological phase based mapping method was possible to minimize classification error when analyzing the inaccessible land of North Korea.

The classification of biotope type and characteristics of naturalized plant habitat on the coastal sand dune ecosystem

  • Lee, Jeom-Sook;Jeon, Ji-Young;Ihm, Byung-Sun;Myeong, Hyeon-Ho
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.167-175
    • /
    • 2012
  • Coastal sand dune systems are particularly fragile and threaten the environment. However, these systems provide fundamental ecosystem services to the nearby urban areas, acting, for example, as protective buffers against erosion. In this paper, we attempt to classify the biotope types of coastal sand dune ecosystems and select an index for the assessment of the conservation value. The types of biotopes are categorized based on the vegetation map; floras are examined in order to research the effects of hinterlands on coastal sand dunes. In addition, a naturalization rate and an urbanization index for each biotope type in hinterlands are analyzed. In the ecosystem of coastal sand dunes, the urbanization index and naturalization rate shows a higher value in sand dunes with areas of road, residential, and idle land in farm villages, rice fields, and fields. On the contrary, a lower value in the urbanization index and naturalization rate is present when typical biotope types, such as sand dune vegetation and natural Pinus thunbergii forests, are widely distributed. Based on these results, urbanization index and naturalization rate should be used as critical indices for the assessment of the ecosystem of costal sand dunes.

Taxonomic Review of Clematis flabellata Nakai

  • Beom Kyun Park;Dong Chan Son;Sung Chul Ko
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.26-26
    • /
    • 2020
  • Daphne L. (Thymelaceae) comprises about 95 species distributing worldwide from N Africa, N India, SE Asia to E Asia and the coast of the Mediterranean of Europe. In Korea, five species of this genus have been described. In this study, we included four species (D. genkwa, D. pseudomezereum, D. kiusiana, D. jejudoensis) from Korea, excluding cultivated D. odora. The morphological characters through local surveys and the re-classification of the specimens collected in the Korea National Herbarium (KH) were carried out and distribution maps for each taxon were also prepared. The major characters include habit, trichomes in winter bud, leaf, and twig, phyllotaxis, inflorescence, size of calyx lobe and trichomes in the calyx tube, etc. The distribution map showed that D. genkwa is mainly distributed in the coastal area of Hwanghaenam-do, Pyeongannam-do, Jeollabuk-do and Jeollanam-do, whereas D. pseudomezereum is distributed in the limestone zone of Gangwon-do, Jeollabuk-do, and Gyeongsangbuk-do. Similarly, D. kiusiana is mostly found in Jeollanam-do, Gyeongsangnam-do, and Jeju-do. In addition, D. jejudoensis is known to be distributed in forests of Murueng, Andeok, and Seonheul-ri in Jeju-do, but recently, new habitat is discovered in the island forest areas of Jeollanam-do. However, some of these individuals showed the characteristics of D. kiusiana, thus before come to any conclusion detailed taxonomic review of D. jejudoensis and D. kiusiana is required.

  • PDF

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).