• 제목/요약/키워드: Haar-wavelet

검색결과 105건 처리시간 0.02초

Evaluation of Body Movement during Sleep with a Thermopile, Wavelets and Neuro-fuzzy Reasoning

  • Yoon, Young-Ro;Shin, Jae-Woo;Lee, Hyun-Sook;Jose C.Principe
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권1호
    • /
    • pp.5-10
    • /
    • 2004
  • 체동은 수면 분석에 있어서 중요한 변수중의 하나이다. 본 연구에서는 수면 중에 발생하는 체동을 비접촉 방식으로 검출하기 위하여 4채널의 써모파일 검출기를 구현하였으며, 써모파일 센서를 이용한 방식의 체통 검출 가능성을 확인하기 위해 열적외선 카메라를 통해 획득한 영상을 써모파일의 수학적 모델에 적용하였다 합성된 체동 신호는 Haar 웨이브렛을 이용하여 변환함으로써 체통이 발생한 시점과 움직임의 크기를 상체 및 하체로 나누어 순간 체동을 검출하였다. 또한 뉴로-퍼지 알고리즘인 ANFIS를 이용하여 발생한 체동이 상체만 움직인 것인지 또는 하체만 움직인 것인지 또는 몸 전체가 움직인 것인지에 대한 부위별 체동을 검출하였고, 총 3명의 피험자에 대해 60분간의 데이터를 획득하여 실험한 결과 순간 체동과 부위별 체통에 대해 각각 평균 96.3%와 39.2% 의 검출률을 나타냈다.

SVM을 이용한 유방 종양 조직 영상의 분류 (A Classification of Breast Tumor Tissue Images Using SVM)

  • 황해길;최현주;윤혜경;최흥국
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2005
  • Support vector machines is a powerful learning algorithm and attempt to separate belonging to two given sets in N-dimensional real space by a nonlinear surface, often only implicitly dened by a kernel function. We described breast tissue images analyses using texture features from Haar wavelet transformed images to classify breast lesion of ductal organ Benign, DCIS and CA. The approach for creating a classifier is composed of 2 steps: feature extraction and classification. Therefore, in the feature extraction step, we extracted texture features from wavelet transformed images with $10{\times}$ magnification. In the classification step, we created four classifiers from each image of extracted features using SVM(Support Vector Machines). In this study, we conclude that the best classifier in histological sections of breast tissue in the texture features from second-level wavelet transformed images used in Polynomial function.

  • PDF

웨이브릿 변환과 2D PCA를 이용한 얼굴 인식 (Face Recognition using Wavelet Transform and 2D PCA)

  • 김영길;송영준;장언동;김동우
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.348-351
    • /
    • 2004
  • 본 논문은 Haar 웨이브릿 변환과 2D PCA를 이용한 얼굴 인식 방법에 대하여 제안한다. 기존의 PCA는 1 차원 벡터들로 공분산 행렬을 구하는 반면에 2D PCA는 2 차원 영상을 직접적으로 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 특징 벡터들을 추출하였다. 제안 방법은 얼굴 데이터를 낮은 차원과 강건한 특징을 가지는 얼굴 영상을 얻기 위해 웨이브릿 변환을 이용하여 LL 대역의 영상 데이터로 2D PCA 방법을 적용하여 얼굴을 인식한다. 실험결과는 원래 크기의 얼굴 영상에 2D PCA를 적용한 인식률보다 웨이브릿 변환의 LL 대역의 얼굴 영상에 2D PCA를 적용한 얼굴 인식률이 더 좋음을 보여준다.

  • PDF

웨이브렛 변환과 LVQ를 이용한 홍채인식 시스템 (Human Iris Recognition System using Wavelet Transform and LVQ)

  • 이관용;임신영;조성원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.389-398
    • /
    • 2000
  • The popular methods to check the identity of individuals include passwords and ID cards. These conventional method for user identification and authentication are not altogether reliable because they can be stolen and forgotten. As an alternative of the existing methods, biometric technology has been paid much attention for the last few decades. In this paper, we propose an efficient system for recognizing the identity of a living person by analyzing iris patterns which have a high level of stability and distinctiveness than other biometric measurements. The proposed system is based on wavelet transform and a competitive neural network with the improved mechanisms. After preprocessing the iris data acquired through a CCD camera, feature vectors are extracted by using Haar wavelet transform. LVQ(Learning Vector Quantization) is exploited to classify these feature vectors. We improve the overall performance of the proposed system by optimizing the size of feature vectors and by introducing an efficient initialization of the weight vectors and a new method for determining the winner in order to increase the recognition accuracy of LVQ. From the experiments, we confirmed that the proposed system has a great potential of being applied to real applications in an efficient and effective way.

  • PDF

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

화소 삽입을 이용한 적응적 영상보간 (Adaptive Image Interpolation Using Pixel Embedding)

  • 한규필;오길호
    • 한국멀티미디어학회논문지
    • /
    • 제17권12호
    • /
    • pp.1393-1401
    • /
    • 2014
  • This paper presents an adaptive image interpolation method using a pixel-based neighbor embedding which is modified from the patch-based neighbor embedding of contemporary super resolution algorithms. Conventional interpolation methods for high resolution detect at least 16-directional edges in order to remove zig-zaging effects and selectively choose the interpolation strategy according to the direction and value of edge. Thus, they require much computation and high complexity. In order to develop a simple interpolation method preserving edge's directional shape, the proposed algorithm adopts the simplest Haar wavelet and suggests a new pixel-based embedding scheme. First, the low-quality image but high resolution, magnified into 1 octave above, is acquired using an adaptive 8-directional interpolation based on the high frequency coefficients of the wavelet transform. Thereafter, the pixel embedding process updates a high resolution pixel of the magnified image with the weighted sum of the best matched pixel value, which is searched at its low resolution image. As the results, the proposed scheme is simple and removes zig-zaging effects without any additional process.

Daubechies 웨이블릿 필터를 사용한 볼륨 데이터 인코딩 (Volumetric Data Encoding Using Daubechies Wavelet Filter)

  • 허영주;박상훈
    • 정보처리학회논문지A
    • /
    • 제13A권7호
    • /
    • pp.639-646
    • /
    • 2006
  • 데이터 압축 기술은 대용량의 데이터를 효율적으로 저장하고 전송할 수 있게 해주는 기술로, 요구되는 데이터의 용량이 커지고 네트워크의 트래픽이 증가함에 따라 그 중요도가 점점 더 높아지고 있다. 특히 다양한 응용과학과 공학 분야에서 산출되는 볼륨 데이터는 컴퓨팅 기술의 발전에 힘입어 그 용량이 점점 더 증가하는 추세에 있다. 본 논문에서는 Daubechies 웨이블릿 변환을 적용해서 볼륨 데이터를 압축하는 기법을 제안한다. 구현된 D4 웨이블릿 필터 기반 압축 기법은 3차원 볼륨 데이터에 대한 손실 압축과 블록 단위의 무작위 추출 복원을 지원한다. 본 기법은 기존의 Harr 필터를 이용한 압축 방식에 비해 복원 데이터의 손실율이 낮기 때문에, 정밀한 복원 영상이 중요시되는 대용량 데이터의 압축 및 인터렉티브 가시화 응용에 유용하게 사용될 수 있다.

AN EFFICIENT AND STABLE ALGORITHM FOR NUMERICAL EVALUATION OF HANKEL TRANSFORMS

  • Singh, Om P.;Singh, Vineet K.;Pandey, Rajesh K.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1055-1071
    • /
    • 2010
  • Recently, a number of algorithms have been proposed for numerical evaluation of Hankel transforms as these transforms arise naturally in many areas of science and technology. All these algorithms depend on separating the integrand $rf(r)J_{\upsilon}(pr)$ into two components; the slowly varying component rf(r) and the rapidly oscillating component $J_{\upsilon}(pr)$. Then the slowly varying component rf(r) is expanded either into a Fourier Bessel series or various wavelet series using different orthonormal bases like Haar wavelets, rationalized Haar wavelets, linear Legendre multiwavelets, Legendre wavelets and truncating the series at an optimal level; or approximating rf(r) by a quadratic over the subinterval using the Filon quadrature philosophy. The purpose of this communication is to take a different approach and replace rapidly oscillating component $J_{\upsilon}(pr)$ in the integrand by its Bernstein series approximation, thus avoiding the complexity of evaluating integrals involving Bessel functions. This leads to a very simple efficient and stable algorithm for numerical evaluation of Hankel transform.

다중해상도해석을 이용한 콘크리트 재료의 수치적 동질화 (Numerical Homogenization in Concrete Materials Using Multi-Resolution Analysis)

  • 이인규;노영숙
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.939-946
    • /
    • 2005
  • 비균질 재료인 콘크리트의 강성 특성과 성능저하 현상을 웨이블릿 변환을 이용한 다중해상도해석을 통해 각 관찰 규모에 따라 동질화 과정의 적용성 및 거시적 손상지수의 평가 등을 연구하였다. 연속적인 Haar 웨이블릿 변환은 기존 강성행렬의 특성을 연속적인 축소규모로의 복제를 통해 미세규모로부터 거시규모로의 축소 또는 복원 과정을 나타내었고 이는 선형구조계의 크기별 스펙트럼 특성의 보존, 즉 타원성, 철면성 그리고 양의 정부호성을 보존하여 각 규모별 해의 유효성을 확인하였다. 웨이블릿 계수를 이용한 기존 강성의 평균은 거시단계의 변형에너지와 상호관계를 가지고 아래 단계로의 축소, 윗 단계로의 복원을 자유롭게 할 수 있는 장점이 있다. 이러한 다중해상도해석의 예제로서 1차원 및 2차원 2상복합체를 가지고 유한요소해석을 통해 기존 이론의 검증과 최소고유치의 각 크기단계별 변화 과정, 원 축소 구조계의 해의 유일성 그리고 국부적 손상지수의 동질화 여부 등을 검사하였다. 이러한 동질화 축소 과정은 자유도가 큰 비선형 구조계로의 적용의 첫 단계를 제공하였다.

스테고 잡음 확대를 위한 영상 분해와 동시 발생 확률에 기반한 스테그분석 (Steganalysis Based on Image Decomposition for Stego Noise Expansion and Co-occurrence Probability)

  • 박태희;김재호;엄일규
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.94-101
    • /
    • 2012
  • 본 논문은 커버 영상으로부터 스테고 영상의 검출율을 높이기 위한 개선된 스테그분석 기법을 제안한다. 스테그분석에서 스테고 영상의 검출율을 높이려면 데이터 은닉에 의해 야기되는 작은 변화가 증폭되어야 한다. 이를 위해 본 논문에서는 두 단계의 방법을 통해 커버 영상과 스테고 영상의 특징 벡터를 추출한다. 먼저 스테고 잡음을 두배 이상 확대하기 위해 주어진 영상을 상위 4비트와 하위 4비트로 각각 분해한다. 각 분해된 영상에 대하여 3-레벨 Haar 웨이블릿 변환을 통해 총 12개의 부밴드를 생성하고, 생성된 부밴드에 대하여 동일 스케일 상에서 다른 부밴드 계수간의 동시발생 확률을 구한다. 웨이블릿 영역에서 부 밴드간 계수의 동시발생 확률은 데이터 은닉에 의해 상관성에 영향을 받게 되므로 커버 및 스테고 영상을 구분하기 위한 특징으로 사용될 수 있다. 본 논문에서는 동시발생 확률의 특성함수에 대한 모멘트를 구하여 특징 벡터로 사용한다. 추출된 특징 벡터는 신경망회로망 분류기를 사용하여 커버 영상과 스테고 영상을 학습하고 판별한다. 제안 방법의 성능평가를 위해 S-tool에 의한 LSB 및 COX의 SS, F5 임베딩 방법에 의한 다양한 삽입률의 스테고 영상을 사용하였으며, 실험결과 제안한 기법은 기존의 기법에 비해 비밀 메시지 삽입 유무의 검출율을 향상시킬 뿐만 아니라 판별의 정확도가 높음을 확인할 수 있었다.