• 제목/요약/키워드: Haar-Like

검색결과 148건 처리시간 0.034초

실시간 얼굴인식 시스템 구현을 위한 비올라존스 알고리즘 개선 (Improvement in Viola-Jones method for Real-Time Face Recognition System)

  • 홍영민;이인성;박종순;조용성;김창범
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.143-147
    • /
    • 2012
  • The rapid growth of camera technology can provide various types of information which was not previously provided. Furthermore, IP camera which has rapid data transfer rate and high resolution particularly provide a lot of useful functions beyond the existing simple surveillance capabilities. We are developing Real-Time Face Recognition Access Control System based on the camera technology, and improvement of face detection and recognition algorithms are vitally needed to realize that system. In this paper, we proposes a method to improve the computing speed and detection rate by adding new features to the existing Viola-Jones detection algorithm.

피부색 히스토그램 검출을 통해 향상된 자동 손 추적 시스템 (Automatic Hand Tracking System using Skin Color Histogram)

  • 김범준;신병석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1477-1479
    • /
    • 2015
  • 기존의 연구와 같이 정확한 피부색 영역을 추출하기 위해 색상공간을 조절하는 방식은 조명이나 주변환경의 영향에 따라 잘못된 결과를 낼 수 있다. Camshift 알고리즘을 이용한 추적을 할 때에도 대상에게 맞춰진 피부색 히스토그램을 이용해서 추적하지 않으므로 범용성이 떨어진다. 이러한 문제점을 해결하기 위해 Camshift 알고리즘의 최초추적 윈도우를 결정하고 히스토그램을 결정하여손 피부색 추적성능을 향상시켰다. 보편적인 피부색 필터를 이용하여 인체 전경을 추출하고, haar like feature detection (특징검출)을 이용하여 손 영역을 검색한다. 이후 피부색 필터를 통해 이진화 된 이미지를 이용해 원 영상을 마스킹 한 후 사용자 고유의 피부색의 히스토그램을 결정한다. 이 방법으로 얻은 히스토그램을 Camshift알고리즘에 적용하면 기존방식 으로 생성한 히스토그램을 사용할 때보다 좋은 추적 성능을 보인다.

색상 정보를 이용한 Cascade 방식의 손 영역 검출 (Hand Region Detection based on Cascade using Color Information)

  • 조지윤;채승호;양윤식;한탁돈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.1022-1024
    • /
    • 2015
  • 휴먼-컴퓨터 인터렉션과 같은 응용분야에서 손동작 인식을 위한 많은 연구가 이루어지고 있다. 손동작 인식을 이용한 인터렉션의 성능 향상을 위해서는 정확한 손 영역 검출이 필요하다. 본 논문에서는 색상 정보를 이용하여 Cascade 방식에 기반한 손 영역 검출 방법을 제안한다. Cascade 방식으로 손 영역을 검출할 경우보다 강인한 인식률을 얻기 위해서 색상정보를 이용하였으며, Haar-like 특징점으로 학습된 분류기를 통해 손 영역 검출 방법을 제안한다.

CCTV에서 다중 객체 검출 시스템 연구 (Study of Multi-Object Detection System from CCTV)

  • 박종환;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.936-938
    • /
    • 2014
  • 폐쇄회로 TV는 우리의 생활에 밀접하게 접근할 수 있는 수준에 다다르게 되었다. 따라서 중요한 작업은 영상에서 우리가 원하는 개체를 검출해내는 것이라 할 수 있다. 그 중에서 사람의 모습을 촬영해서 사람의 특징을 추출하는 연구가 많이 진행되었고 이를 이용해서 실제 CCTV 영상을 토대로 개체를 검출해내는 시스템에 대해 고찰하였다. 여러 가지 개체 검출 알고리즘 중에서 오픈소스로 제공이 되며, 다중 개체를 검출하기 위해서 Haar-like feature를 이용한 개체 추출 알고리즘을 이용하여 CCTV 다중대체 검출에 대해 실험을 진행하였다. 정지영상에서는 정면을 응시하는 얼굴영역 검출에서는 높은 성능을 보이며 다른 각도에서는 차이가 있지만 무난한 성능을 보이지만 실시간에서는 보정 작업이 필요하게 되었다.

이침 혈자리 학습을 위한 에이전트 시스템의 설계 (Design of Agent System for Learning to Ear Acupuncture)

  • 장용현;전지영;양장훈;최유주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.9-11
    • /
    • 2013
  • 본 논문에서는 귀의 형태와 색을 통해서 질병을 자가진단 후 귀의 특정 부위를 자극하는 이침요법을 위한 시술 보조 시스템을 제안한다. 제안 시스템은 피시술자의 귀의 이미지 정보와 질병에 대한 정보를 처리하여 이침을 위한 혈자리를 귀 이미지에 표시해 주는 시스템을 구현하였다. 특히 귀를 인식하는 부분에 있어서, Haar-like feature와 Adaboost알고리즘을 사용하는 OpenCV내의 함수를 사용하였고 인식된 귀영역을 그리드 영역으로 나누고 질병에 대한 사전 정보에 따라서 그리드 영역내의 이침혈자리 시스템을 표시하는 시스템으로 구성하였다.

안드로이드 기반의 휴대용 스마트폰을 이용한 실시간 얼굴 검출 (Android-based Face detection using OpenCV)

  • 구모세;김상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1077-1079
    • /
    • 2020
  • 본 논문에서는 현재 활발히 연구 중에 있는 얼굴 인식의 전 과정인 얼굴 검출단계를 OpenCV를 이용한 안드로이드 기반의 휴대용 스마트폰으로 실시간 얼굴 및 눈 영역을 검출하는 어플리케이션의 개발을 수행하였다. 얼굴 검출 및 눈 검출 기술은 OpenCV에서 제공하는 실시간 얼굴 인식을 위해 이미지에서 얼굴의 특징을 찾는 기법 중 하나인 Haar-like Feature을 이용한 검출 방식을 사용하였다. 얼굴 검출 및 눈 검출에 대해 스마트폰에서 촬영한 이미지를 사용하여 구현 결과를 평가하였다.

소유자 인증을 통한 자동시동 및 지능형 원격 도난방지 기술 (Development of Intelligent Remote Vehicle Safety System including Automatic Starting System through Owner Identification)

  • 김권;김재경;이창우;장대식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.17-20
    • /
    • 2007
  • 본 논문은 차량 내부에서 정면의 얼굴 뿐 아니라, 측면의 얼굴도 효과적으로 추출하기 위해 다시점의 Haar-like 특징을 결합하여 사용하는 방법을 개발하여 적용하였고, 얼굴의 위치변화에 비교적 강건한 HMM(Hidden Markov Model)기반의 얼굴 인식을 사용하며, 또한 다양한 얼굴자세, 조명환경 등의 다중 얼굴 자료를 기반으로 하는 다시점 얼굴 DB의 학습을 통해 보다 강건하게 얼굴을 인식할 수 있도록 개선하였다. PC를 통해 운전자의 얼굴이 정상적으로 인식되면 자동으로 시동모듈을 제어하여 시동을 걸어줌으로써 운전자의 편리성을 향상할 수 있고 운전자가 아닌 자가 운전석에 착선한 경우에는 획득된 운전자의 얼굴영상 부분을 원격단말기로 전송하여 운전자 또는 경찰이 이를 이용하여 도난을 방지할 수 있는 조치를 취할 수 있도록 지원한다.

깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법 (A Fast and Accurate Face Detection and Tracking Method by using Depth Information)

  • 배윤진;최현준;서영호;김동욱
    • 한국통신학회논문지
    • /
    • 제37권7A호
    • /
    • pp.586-599
    • /
    • 2012
  • 본 논문에서는 RGB영상과 깊이영상을 사용하여 얼굴검출 및 추적을 고속으로 수행할 수 있는 방법을 제안한다. 이 방법은 얼굴검출 과정과 얼굴추적 과정으로 구성되며, 얼굴검출 과정은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이영상을 사용하여 탐색영역을 축소한다. 얼굴추적은 템플릿 매칭방법을 사용하며, 조기종료 기법을 사용하여 수행시간을 줄였다. 이 방법들을 구현하여 실험한 결과, 얼굴검출 방법은 기존의 방법에 비해 약 39%의 수행시간을 보였으며, 얼굴추적 방법은 $640{\times}480$ 해상도의 프레임 당 2.48ms의 추적시간을 보였다. 또한 검출율에 있어서도 제안한 얼굴검출 방법은 기존의 방법에 비해 약간 낮은 검출률을 보였으나, 얼굴로 인식하였지만 실제로는 얼굴이 아닌 경우의 오검출률에 있어서는 기존방법의 약 38% 향상된 성능을 보였다. 또한 얼굴추적 방법은 추적시간과 추적 정확도에 있어서 상보적인 관계를 가지며, 특별한 경우를 제외한 모든 경우에서 약 1%의 낮은 추적오차율을 보였다. 따라서 제안한 얼굴검출 및 추적방법은 각각 또는 결합하여 고속 동작과 높은 정확도를 필요로 하는 응용분야에 사용될 수 있을 것으로 기대된다.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템 (Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm)

  • 진문용;박종빈;이동석;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.361-368
    • /
    • 2014
  • 차량 번호판 인식 시스템은 복잡한 교통환경의 효율적 관리를 위해 발전되어 현재 많은 곳에 사용되고 있다. 그러나 조명, 잡음, 배경변화, 번호판 훼손 등 환경변화에 큰 영향을 받기 때문에 제한된 환경에서만 동작하며, 실시간으로 사용하기 어렵다. 본 논문에서는 조명변화와 잡음에 강건하며 빠른 번호판 인식을 위한 휴리스틱 분할 알고리즘 및 이를 이용한 실시간 번호판 인식 시스템을 제안한다. 첫 번째 단계는 Haar-like 특징과 Adaboost를 이용하여 번호판을 검출한다. 이 방법은 적분영상을 이용하며 케스케이드 구조로 구성되어 있어 빠른 검출이 가능하다. 두 번째 단계에서 적응 히스토그램 평활화 방법과 노이즈를 경감시키는 바이레터럴 필터를 이용하여 번호판의 종류를 결정한 후, 번호판 종류에 따라 적분영상을 이용한 적응 이진화, 픽셀 프로젝션, 사전지식 등을 기반으로 빠르고 정확한 문자 분할을 한다. 세번째 단계에서는 HOG와 신경망 알고리즘을 이용하여 숫자를 인식하고, SVM을 이용해 한글을 인식한다. 실험결과는 번호판검출에 94.29%의 검출률, 2.94%의 오경보율을 보이며, 문자분할에서는 검출률 97.23%, 2.94%의 오경보율을 보였다. 문자인식에서 평균 인식률은 98.38%이다. 평균 운용시간은 140ms으로 빠르고 강인한 실시간 시스템을 만들 수 있다.