• Title/Summary/Keyword: HYSYS

Search Result 60, Processing Time 0.027 seconds

Design of Gas Concentration Process with Thermally Coupled Distillation Column Using HYSYS Simulation (HYSYS를 이용한 열복합 증류식 가스 농축공정의 설계)

  • 이주영;김영한;황규석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.842-846
    • /
    • 2002
  • Design of gas concentration process using a fully thermally coupled distillation is conducted with the commercial design software HYSYS. Detailed procedure of the design is explained, and the performance of the process is compared with that of a conventional system A structural design is exercised for the design convenience. The design outcome indicates that the procedure is simple and efficient. The structural information yielded from equilibrium distillation gives an easy formulation of distillation system which is the initial input required from the setup of the distillation system The performance of the new process indicates that an energy saving of 17.6 % is obtained compared with the conventional process while total number of trays maintains at the same.

Analysis on the Energy Saving Effect of Free Cooling System in Data Center (데이터 센터의 외기냉수냉방 시스템에 대한 에너지 절감효과 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Heo, Jeong-Ho;Kim, Young-Min
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.73-78
    • /
    • 2014
  • Recently, Free cooling system usage has increased at many buildings in intermediate and winter season. Free cooling system is used to reduce the energy consumption of refrigeration in that season. Free cooling system is refrigeration system using cooled water. In general, this system is applied with the building having refrigeration load at all time such as a data center. In this study, energy consumption of a data center taking free cooling system in Ulsan was evaluated by the software HYSYS. the main result is as in the following : free cooling system is effective from January to April and from November to December. In case of Ulsna in 2013, using free coolng system is able to spend refrigeration energy of about 15% less than existing system. According to this result, it is appropriated that free cooling system is used in building having refrigeration load at all time such as data center.

Application of a Divided-Wall Column for the Trichlorosilane Refining Process (삼염화실란 정제공정에서의 분리벽형 증류탑 적용)

  • Hong, Seung-Taek;Lee, Moon-Yong
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • In this study, we suggest the application of the divided-wall column (DWC) to the existing trichlorosilane(TCS) purification process in the commercial polysilicon manufacturing process. Using Aspen HYSYS V7.1, an extensive simulation study was carried out for the analysis of the energy consumptions and capital cost for the conventional sequential distillation configuration and the DWC for producing a given purity and yield of trichlorosilane. As a result, it is shown that the DWC saves the separation energy by 61% and the equipment cost by 58% compared with the conventional distillation process.

Performance Characteristics of a Mixed Refrigerant OTEC Power Cycle Using Hot Waste Water (온배수를 이용한 혼합냉매용 해양온도차 발전 사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Heo, Jeong-Ho;Ye, Byoung-Hyo;Kim, Hyun-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.102-107
    • /
    • 2013
  • In this paper, the performance analysis for evaporation capacity, total work and efficiency of the ocean thermal energy conversion(OTEC) power system using mixed refrigerant(R32,R152a) is conducted to find the effect of hot wasted water on OTEC power system. The system in this study is applied with two stage turbine, regenerator, cooler and separator on Organic Rankine Cycle. The commercial program HYSYS is used for the performance analysis. The main results were summarized as follows : The efficiency of the OTEC power cycle has a largely effect on the evaporation capacity and total work. As increasing temperature of heat source water, evaporator's capacity is decreased but total work increase. Otherwise, using hot wasted water bring effects not only increasing system efficiency but also declining evaporator's capacity. Thus With a thorough grasp of these effect, it is necessary to find way to use hot wasted water emitted by power plant and so on.

Performance analysis simulation for domestic application of heat pump by using sea water heat source (해수열에너지를 이용한 히트펌프의 국내 적용을 위한 성능평가 시뮬레이션)

  • Lim, Seungtaek;Kim, Jungsik;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.814-820
    • /
    • 2014
  • Due to the development of human civilization, industrialization and urbanization, the human race demanded the food, clothing and shelter as well as a comfortable living environment. For the purpose of this, the refrigeration and air conditioning part was carried out research and development. However, high oil prices and environmental pollution having problems in the 21st century cannot be overlooked. As an alternative, thermal system was designed using the heat pump to applied sea water heat source. In this paper, outside and sea temperatures are analysed in 2010 and carried out the performance analysis simulation at All water and All Air heat pump system by HYSYS program for domestic use. As a result, total average COP of the system is 3.37 from All Water system and All Air is 3.48. It showed that high performance confirmed in both system.

Simulation Study on Liquid Air Energy Storage (LAES) System using Dual Refrigeration Cycles and Thermal Oil Circulation (냉매사이클과 열매체유 순환을 활용한 액화공기에너지저장 시스템 공정모사 연구)

  • Jang, Soonnam;Park, Jongpo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.63-73
    • /
    • 2018
  • Innovative technical process for Energy Storage System (ESS), Liquid Air Energy Storage system (LAES) is mature technologies based on the gas liquefaction process. In spite of many advantages such as high energy density, no geographical constraints, low investment costs and long useful life, the system has not yet widely commercialized due to low round trip efficiency. To improve RTE and acquire high yield of liquid air, various configurations of LAES process have been considered. In this research, dual refrigerants cycle (R-600a and methanol) for air liquefaction and thermal oil circulation for power generation via liquid air gasification have been applied to improve cycle performance significantly using Aspen HYSYS simulator.

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

Techno-economic Analysis of Glycerol Steam Reforming for H2 Production Capacity of 300 m3 h-1 (300 m3 h-1급 수소 생산을 위한 글리세롤 수증기 개질반응의 기술·경제성 분석)

  • Heo, Juheon;Lim, Hankwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.209-214
    • /
    • 2018
  • In this paper, the techno-economic analysis of glycerol steam reforming for $H_2$ production capacity of $300m^3\;h^{-1}$ was carried out. The process of glycerol steam reforming was constructed by using Aspen $HYSYS^{(R)}$, a commercial process simulator, and parametric studies for the effect of the operating temperature on $H_2$ production was performed. Moreover, the economic analysis was conducted through an itemized cost estimation, sensitivity analysis (SA) and cash flow diagram (CFD), and the unit $H_2$ production cost was 5.10 $ ${kgH_2}^{-1}$ through the itemized cost estimation of glycerol steam reforming for $H_2$ production capacity of $300m^3\;h^{-1}$. SA was employed to identify key economic factors and various economic indicators such as net present value (NPV), discounted payback period (DPBP), and present value ratio (PVR) were found according to $H_2$ selling price using CFD.

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor (분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석)

  • Lee, Boreum;Lim, Hankwon
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

Evaluation of Operating Conditions for the Natural Gas Transmission Pipeline in the Arctic Environment (극한지 장거리 천연가스 배관의 운전조건 평가)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2017
  • The operating temperature range of the natural gas pipeline in Arctic environment would be controlled primarily to optimize gas throughput and to minimize the environmental impact resulting from operation of such pipelines. The temperature of the gas as it flows through the pipeline is a function of both the Joule-Thomson effect and the pipe to soil heat transfer. Therefore, the heat transfer and Joule-Thomson effect of the buried natural gas pipeline in this study were carefully considered. Soil temperatures and overall heat transfer coefficients were assumed to be $0{\sim}-20^{\circ}C$ and $0{\sim}5.5W/m^2K$, respectively. The gas temperature and pressure calculations along a pipeline were performed simultaneously at different soil temperatures and overall heat transfer coefficients. Also, this study predicted the phase change and hydrate formation for different soil temperatures and overall heat transfer coefficients using HYSYS simulation package.