• Title/Summary/Keyword: HYBRID 기법

Search Result 1,374, Processing Time 0.034 seconds

Methodology for Issue-related R&D Keywords Packaging Using Text Mining (텍스트 마이닝 기반의 이슈 관련 R&D 키워드 패키징 방법론)

  • Hyun, Yoonjin;Shun, William Wong Xiu;Kim, Namgyu
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.57-66
    • /
    • 2015
  • Considerable research efforts are being directed towards analyzing unstructured data such as text files and log files using commercial and noncommercial analytical tools. In particular, researchers are trying to extract meaningful knowledge through text mining in not only business but also many other areas such as politics, economics, and cultural studies. For instance, several studies have examined national pending issues by analyzing large volumes of text on various social issues. However, it is difficult to provide successful information services that can identify R&D documents on specific national pending issues. While users may specify certain keywords relating to national pending issues, they usually fail to retrieve appropriate R&D information primarily due to discrepancies between these terms and the corresponding terms actually used in the R&D documents. Thus, we need an intermediate logic to overcome these discrepancies, also to identify and package appropriate R&D information on specific national pending issues. To address this requirement, three methodologies are proposed in this study-a hybrid methodology for extracting and integrating keywords pertaining to national pending issues, a methodology for packaging R&D information that corresponds to national pending issues, and a methodology for constructing an associative issue network based on relevant R&D information. Data analysis techniques such as text mining, social network analysis, and association rules mining are utilized for establishing these methodologies. As the experiment result, the keyword enhancement rate by the proposed integration methodology reveals to be about 42.8%. For the second objective, three key analyses were conducted and a number of association rules between national pending issue keywords and R&D keywords were derived. The experiment regarding to the third objective, which is issue clustering based on R&D keywords is still in progress and expected to give tangible results in the future.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

Susceptibility of a hybrid (Pinus rigida×P. x rigitaeda) and P. thunbergii Seedlings to Fusarium circinatum Isolated from P. thunbergii in Jeju Island (제주도 해송에서 분리한 푸사리움가지마름병균에 대한 교잡종 (리기다소나무×리기테다소나무) 소나무와 해송 묘목의 감수성 변이)

  • Yoon, Jun-Hyuck;Woo, Kwan-Soo;Shin, Han-Na;Lee, Seong-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.420-428
    • /
    • 2009
  • In this study, the variation of 20 Pinus thunbergii isolates of F. circinatum from 2 damaged sites in Jeju-Island were compared with a known Fusarium circinatum using molecular biological techniques. Two- and four-year-old seedlings of Pinus rigida${\times}$Pinus x rigitaeda and two-, three- and six-year-old seedlings of P. thunbergii were inoculated with one of the most virulent isolates, FT-7, to determine differences in susceptibility. In site 1 (FT), 13 isolates of F. circinatum were isolated from 14 individuals and in site 2 (FS), 7 isolates of F. circinatum were isolated from 9 individuals. No difference was found in the sequences of the internal transcribed spacer (ITS) region of the ribosomal RNA genes in the FS and FT isolates, and also even in the known isolate of F. circinatum, FE 1-1. However, the ITS sequences of the FS and FT isolates differed from those of a fungus, Botrytis cinerea. Two-year-old seedlings of P. rigida${\times}$P. x rigitaeda showed higher susceptibility (93.3% of mortality) than four-year-old ones. Three-year-old seedlings of P. thunbergii showed the highest susceptibility (66.7% of mortality) compared to those at other ages in the same species. We found a positive correlation between basal diameter and lesion length in the seedlings of P. rigida${\times}$P. x rigitaeda ($R^2=0.66$) and P. thunbergii (p < 0.0001), respectively. There were significant differences in susceptibility by the age of seedlings in each of P. rigida${\times}$P. x rigitaeda (p < 0.0001) and P. thunbergii (p < 0.0001) based on lesion length.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.