Susceptibility of a hybrid (Pinus rigida×P. x rigitaeda) and P. thunbergii Seedlings to Fusarium circinatum Isolated from P. thunbergii in Jeju Island

제주도 해송에서 분리한 푸사리움가지마름병균에 대한 교잡종 (리기다소나무×리기테다소나무) 소나무와 해송 묘목의 감수성 변이

  • Yoon, Jun-Hyuck (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Woo, Kwan-Soo (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Shin, Han-Na (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Lee, Seong-Kyu (Southern Forest Research Center, Korea Forest Research Institute)
  • 윤준혁 (국립산림과학원 산림자원육성부) ;
  • 우관수 (국립산림과학원 산림자원육성부) ;
  • 신한나 (국립산림과학원 산림자원육성부) ;
  • 이승규 (국립산림과학원 남부산림연구소)
  • Received : 2009.10.19
  • Published : 20091200

Abstract

In this study, the variation of 20 Pinus thunbergii isolates of F. circinatum from 2 damaged sites in Jeju-Island were compared with a known Fusarium circinatum using molecular biological techniques. Two- and four-year-old seedlings of Pinus rigida${\times}$Pinus x rigitaeda and two-, three- and six-year-old seedlings of P. thunbergii were inoculated with one of the most virulent isolates, FT-7, to determine differences in susceptibility. In site 1 (FT), 13 isolates of F. circinatum were isolated from 14 individuals and in site 2 (FS), 7 isolates of F. circinatum were isolated from 9 individuals. No difference was found in the sequences of the internal transcribed spacer (ITS) region of the ribosomal RNA genes in the FS and FT isolates, and also even in the known isolate of F. circinatum, FE 1-1. However, the ITS sequences of the FS and FT isolates differed from those of a fungus, Botrytis cinerea. Two-year-old seedlings of P. rigida${\times}$P. x rigitaeda showed higher susceptibility (93.3% of mortality) than four-year-old ones. Three-year-old seedlings of P. thunbergii showed the highest susceptibility (66.7% of mortality) compared to those at other ages in the same species. We found a positive correlation between basal diameter and lesion length in the seedlings of P. rigida${\times}$P. x rigitaeda ($R^2=0.66$) and P. thunbergii (p < 0.0001), respectively. There were significant differences in susceptibility by the age of seedlings in each of P. rigida${\times}$P. x rigitaeda (p < 0.0001) and P. thunbergii (p < 0.0001) based on lesion length.

제주도에서 푸사리움가지마름병의 자연감염목으로 추정되는 해송에서 분리된 균을 분자생물학적 기법을 이용하여 기존의 푸사리움가지마름병균과 비교하고, 분리된 균을 리기다소나무${\times}$리기테다소나무 2, 4년생과 해송 2, 3, 6년생 묘목에 인공 접종하여 수종 및 수령별 감수성을 파악하고자 본 실험을 수행하였다. Site 1(FT)에서는 총 샘플 14 개체 중 13 개체에서 푸사리움균이 분리되었으며, Site 2(FS)에서는 9 개체 중 7 개체가 분리되었다. 분리된 균을 ITS region의 증폭을 통해 염기서열을 비교해 본 결과 FS와 FT 균주는 동일한 염기서열을 얻었고, 기존의 푸사리움가지마름병균인 FE 1-1과도 차이를 나타내지 않았다. 반면 잿빛곰팡이와는 차이를 나타내었다. 교잡종인 리기다소나무${\times}$리기테다소나무의 경우, 2년생의 고사율이 93.3%로 다른 수령에 비해 가장 감수성이 높게 나타났고, 해송은 3년생의 고사율이 66.7%로 가장 높은 감수성을 나타내었다. 근원직경과 lesion 길이는 리기다소나무${\times}$리기테다소나무($R^2=0.66$)와 해송($R^2=0.60$)에서 모두 정의 상관관계를 나타내었다. Lesion 길이도 리기다소나무${\times}$리기테다소나무 (p < 0.0001)와 해송(p < 0.0001)에서 모두 묘령에 따라 차이를 나타내어 Lesion 길이가 감수성 정도의 유용한 지표임이 확인되었다.

Keywords

References

  1. Britz H, Coutinho TA, Wingfield BD, Marasas WFO, Wingfield MJ. 2005. Diversity and differentiation in two populations of Gibberella circinata in South Africa. Plant Pathol. 54:46-52 https://doi.org/10.1111/j.1365-3059.2005.01108.x
  2. Carlucci A, Colatruglio L, Frisullo S. 2007. First report of Pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Disease. 91:1683 https://doi.org/10.1094/PDIS-91-12-1683C
  3. Correll JC, Gordon TR, McCain AH, Fox JW, Koehler CS, Wood DL, Schultz ME. 1991. Pitch canker disease in california: pathogenicity, distribution, and canker development on Monterey pine (Pinus radiata). Plant Disease. 75:676-682 https://doi.org/10.1094/PD-75-0676
  4. Enebak SA, Stanosz GR. 2003. Responses of conifer species of the Great Lakes region of North America to inoculation with the pitch canker fungus, Fusarium subglutinans. Canadian Entomology. 123:1355-1367 https://doi.org/10.4039/Ent1231355-6
  5. Fox JW, Wood DL, Koehler CS, O’Keefe ST. 1991. Engraverbeetles (Scoltidae: Ips species) as vectors of the pitch canker fungus, Fusarium subglutinans. Can. Entomol. 123:1355-1367 https://doi.org/10.4039/Ent1231355-6
  6. Gordon TR, Okamoto D, Storer AJ, Wood DL. 1998. Susceptibility of five landscape pines to pitch canker disease, caused by Fusarium subglutinans f. sp. pini. HortScience. 33(5):868-871
  7. Gordon TR, Kirkpatrick SC, Aegerter BJ, Wood DL, Storer AJ. 2006. Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum). Plant pathology. 55:231-237 https://doi.org/10.1111/j.1365-3059.2006.01351.x
  8. Guerra-Santos JJ. 1999. Pitch canker in Monterey pine in Mexico. In Current and Potential Impacts of Pitch Canker in Radiata Pine. Proceedings of IMPACT Monterey Workshop, Monterey Clif., 30 November-3 December 1998. Edited by Devey ME, Matheson AC, Gordon TR. CSIRO, Australia. pp.58-61
  9. Hepting GH, Roth ER. 1946. Pitch canker, a new disease of southern pines. J. For. 44:742-744
  10. Hoover K, Wood DL, Storer AJ, Fox JW, Bros WE. 1996. Transmission of the pitch canker fungus, Fusarium subglutinans f. sp. pini, to Monterey pine, Pinus radiata, by cone and twig-infesting beetles. Can. Entomol. 128:981-994 https://doi.org/10.4039/Ent128981-6
  11. Kim YS, Woo KS, Koo YB, Yeo JK. 2008. Variation in susceptibility of six pine species and hybrids to pitch canker caused by Fusarium circinatum. For. Path. 38:419-428 https://doi.org/10.1111/j.1439-0329.2008.00558.x
  12. Kobayashi T, Muramoto M. 1989. Pitch canker of Pinus luchuensis, a new disease in Japanese forest. Forest Pests. 38:169-173
  13. Landeras E, García P, Fernández Y, Braña M. 2005. Outbreak of pitch canker caused by Fusarium circinatum on Pinus spp. in Northern Spain. Plant Disease. 89:1015 https://doi.org/10.1094/PD-89-1015A
  14. Lee JK, Lee SH, Yang SI, Lee YW. 2000. First report of pitch canker disease on Pinus rigida in Korea. The Plant Pathology J. 16(1):52-54
  15. Lee YM, Choi YK, Min BR. 2000. PCR-RFLP and sequence analysis of the rDNA ITS region in the Fusarium spp. The J. of Microbiology. 38:66-73
  16. Roux J, Eisenberg B, Kanzler A, Nel A, Coetzee V, Kietzka E, Wingfield MJ. 2007. Testing of selected South Africa Pinus hybrids and families for tolerance to the pitch canker pathogen, Fusarium circinatum. New Forests. 33:109-123 https://doi.org/10.1007/s11056-006-9017-4
  17. SAS Institute Inc. 1999. SAS/STAT User’s Guide, Release 8.0 edition. SAS Institute Inc, Cary, North Carolina
  18. Schmale DG, Gordon TR. 2003. Variation in susceptibility to pitch canker disease, caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathology. 52:720-725 https://doi.org/10.1111/j.1365-3059.2003.00925.x
  19. Summerell BA, Salleh B, Leslie JF. 2003. A utilitarian approach to Fusarium identification. Plant Disease. 87(2): 117-128 https://doi.org/10.1094/PDIS.2003.87.2.117
  20. Viljoen A, Wingfield MJ, Marasas WFO. 1994. First report of Fusarium subglutinans f. sp. pini on pine seedlings in South Africa. Plant Disease. 78:309-312 https://doi.org/10.1094/PD-78-0309
  21. Viljoen A, Wingfield MJ, Marasas WFO, Coutinho TA. 1997. Pitch canker of pines: a contemporary rewiew. South Africa J. Sci. 93:411-413
  22. Wikler K, Storer AJ, Newman W, Gordon TR, Wood DL. 2003. The dynamics of an introduced pathogen in a native Monterey pine (Pinus radiata) forest. Forest Ecology and Management. 179:209-221 https://doi.org/10.1016/S0378-1127(02)00524-8
  23. Wingfield MJ, Jacobs A, Coutinho TA, Ahumada R, Wingfield BD. 2002. First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathology. 51:397 https://doi.org/10.1046/j.1365-3059.2002.00710.x
  24. Woo KS, Kim YJ, Kim TS, Lee SK. 2005. Selection of virulent isolates of Fusarium circinatum and investigation of pitch canker severity of Pinus rigida and P. rigida×P. taeda seed orchards in Jeju island. J. Korean For. Soc. 94:402-409