• Title/Summary/Keyword: HYBRID

Search Result 15,856, Processing Time 0.217 seconds

Fabrication of Organic-Inorganic Hybrid Thin Film by Molecular Layer Deposition

  • Han, Gyu-Seok;Kim, Su-Hwan;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.251-251
    • /
    • 2010
  • Organic-inorganic hybrid materials have attracted because of its combined properties, such as flexibility and high electrical performance. In addition, the hybrid materials are expected to have synergic effect which are not shown in just one component. Here, we fabricated organic-inorganic hybrid thin film. Organic-inorganic hybrid thin film have been deposited from diethyl zinc and 1, 2, 4-trihydroxybenzene (THB) by molecular layer deposition (MLD). UV-VIS, Using Infrared spectrum and X-ray photoelectron spectroscopy confirm that Zinc and THB hybrid film (ZnTHB) consist of Zn-O and THB - oxide units and the micro structure and composition of hybrid film. hat the sequential surface reactions of diethyl zinc and ethylene glycol are sufficiently self-limiting and saturating to enable well-controlled MLD growth. Transmission electron microscopy image shows lamination growth of ZnTHB film according to cycle.

  • PDF

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

6.6 kW On-Vehicle Charger with a Hybrid Si IGBTs and SiC SBDs Based Booster Power Module

  • Han, Timothy Junghee;Preston, Jared;Ouwerkerk, David
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.584-591
    • /
    • 2013
  • In this paper, a hybrid booster power module with Si IGBT and Silicon Carbide (SiC) Schottky Barrier Diode (SBDs) is presented. The switching characteristics of the hybrid booster module are compared with commercial Silicon IGBT/Si PIN diode based modules. We applied the booster power module into a non-isolated on board vehicle charger with a simple buck-booster topology. The performances of the on-vehicle charger are analyzed and measured with different power modules. The test data is measured in the same system, at the same points of operation, using the conventional Si and hybrid Si/SiC power modules. The measured power conversion efficiency of the proposed on-vehicle charger is 96.4 % with the SiC SBD based hybrid booster module. The conversion efficiency gain of 1.4 % is realizable by replacing the Si-based booster module with the Si IGBT/SiC SBD hybrid boost module in the 6.6 kW on-vehicle chargers.

A New Low Cost Hybrid Power Filter for Thyristor-Controlled Rectifier Load (싸이리스터 정류부하를 위한 새로운 저원가 복합형 전력필터)

  • 한성룡;김수근;석원엽;조정구;송의호;전희종
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • A new low cost hybrid active filter for thyristor-controlled rectifier load is presented to overcome the high cost problem of the active or the other hybrid active filters. The proposed hybrid active filter which consists of tuned (5th and 7th harmonics) LC passive filters, power factor improvement(PFI) capacitor bank, and active filter compensates power factor as well as harmonic currents. Since most of harmonic currents are filtered by the passive filter and most of reactive power is compensated by the PFI capacitor bank, the power rating of active filter can be minimized, resulting in cost minimization of the proposed hybrid active filter. A 300kVA hybrid active filter system is implemented and tested using 1MVA thyristor rectifier load to verify the operation and performance.

Microstructure Evolution of UFG Steel Weld by Hybrid and Laser Welding (하이브리드 용접과 레이저 용접에 의한 세립강 용접부의 미세조직변화에 관한 연구)

  • Dong, H.W.;Lee, M.Y.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.58-63
    • /
    • 2010
  • A laser beam welding and an electric arc welding were combined, and the positive points of each welding method are drawn such as high speed, low thermal load, deep penetration, and high productivity. The fiber laser-MIG conjugated welding. namely the hybrid welding has been studied mainly for the automation industry of a pipeline welding. In this study, the MIG welding was combined with a fiber laser welding to make up the hybrid welding. The weld shapes, microstructures and mechanical properties for weld zones after the hybrid welding or only fiber laser welding were investigated on the 700 MPa grade Ultra Fine Grained(UFG) high strength steel. The amount of acicular ferrite in weld metals and HAZ(heat affected zone) was observed larger after hybrid welding compared with after only laser welding. The Vickers hardness of the top area of the fusion zone after fiber laser welding was higher compared with after hybrid welding.

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure (충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석)

  • 신현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

Seismic performance evaluation of moment frames with slit-friction hybrid dampers

  • Lee, Joonho;Kim, Jinkoo
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1291-1311
    • /
    • 2015
  • This study investigates the seismic energy dissipation capacity of a hybrid passive damper composed of a friction and a hysteretic slit damper. The capacity of the hybrid device required to satisfy a given target performance of a reinforced concrete moment resisting frame designed with reduced design base shear is determined based on the ASCE/SEI 7-10 process, and the seismic performances of the structures designed without and with the hybrid dampers are verified by nonlinear dynamic analyses. Fragility analysis is carried out to investigate the probability of a specified limit state to be reached. The analysis results show that in the structure with hybrid dampers the residual displacements are generally reduced and the dissipated inelastic energy is mostly concentrated on the dampers. At the Moderate to Extensive damage states the fragility turned out to be smallest in the structure with the hybrid dampers.

An Experimental Study on the Heat Transfer Enhancement by Hybrid Rod (하이브리드 로드에 의한 열전달증진에 관한 연구)

  • Kum, S.M.;Kim, D.C.;Yim, J.S.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • The objective of this experimental study was to investigate the characteristics of heat transfer and air flow in two-dimensional impinging jet system, in which hybrid rods have been set up in front of heating surface in order to increase heat transfer. The shape of hybrid rods had a cross section made with a half of circular cross section and that of rectangular. This time, the clearance from hybrid rod to heating surface(C=1, 2, 4mm) and the pitch between each hybrid rods(P=30, 40, 50mm) changed for the transition region(H/B=10). And this result compared with the experimentation without hybrid rod. As a result, heat transfer performance was best under the condition of C=1mm, in case clearance changed, and as the pitch is 30mm, it is largely influenced by eddies and acceleration in case pitch of hybrid rod changed.

  • PDF

A Study of Chain Extension and Synthesis in Waterborne Polyurethane-Acrylic Hybrid Resin (수용성 폴리우레탄-아크릴 하이브리드수지의 합성 및 사슬 연장에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.203-212
    • /
    • 2011
  • In this study we experimented that how chain extension influences to waterborne urethane-acrylic hybrid resin for leather garment coatings. We knew that polyurethane-acrylic hybrid resins had 5 grades of solvent resistance. Tensile strength measured in the polyurethane-acrylic resin(EDA 5.37 g, 1.928 kgf/$mm^2$) had the most strong strength. Also polyurethane-acylic hybrid resin(EDA 5.37 g. 30.2 mg. loss) had better result than other hybrid resins. EDA contents higher, we obtained low elongation and low flexibility. In this result, chain extension of waterborne polyurethane-acrylic hybrid resin showed the effect in leather coating with ratio of EDA.