• Title/Summary/Keyword: HVOF

Search Result 101, Processing Time 0.027 seconds

Effect of Laser Heat-treatment on WC-CoFe Coated Surface by HVOF (초고속화염용사 WC-CoFe 코팅층의 레이저 표면 열처리 효과)

  • Joo, Yunkon;Yoon, Jaehong;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to $W_2C$. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7 % to 1.2 and the coating thickness decreases from $150{\mu}m$ to $100{\mu}m$. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.

The Mechanical Properties of WC-CoFe Coating Sprayed by HVOF (고속화염용사코팅으로 제조된 WC-CoFe 코팅의 기계적 특성에 관한 연구)

  • Joo, Yun-Kon;Cho, Tong-Yul;Ha, Sung-Sik;Lee, Chan-Gyu;Chun, Hui-Gon;Hur, Sung-Gang;Yoon, Jae-Hong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.6-13
    • /
    • 2012
  • HVOF thermal spray coating of 80%WC-CoFe powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and hard ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen by chrome plating and the brittleness of ceramics coatings. 80%WC-CoFe powder was coated by HVOF thermal spraying for the study of durability improvement of the high speed spindle such as air bearing spindle. The coating procedure was designed by the Taguchi program, including 4 parameters of hydrogen and oxygen flow rates, powder feed rate and spray distance. The surface properties of the 80%WC-CoFe powder coating were investigated roughness, hardness and porosity. The optimal condition for thermal spray has been ensured by the relationship between the spary parameters and the hardness of the coatings. The optimal coating process obtained by Taguchi program is the process of oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min and spray distance 8 inch. The coating cross-sectional structure was observed scanning electron microscope before chemical etching. Estimation of coating porosity was performed using metallugical image analysis. The Friction and wear behaviors of HVOF WC-CoFe coating prepared by OCP are investigated by reciprocating sliding wear test at $25^{\circ}C$ and $450^{\circ}C$. Friction coefficients (FC) of coating decreases as sliding surface temperature increases from $25^{\circ}C$ to $450^{\circ}C$.

Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process (최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성)

  • Song, Ki O;Cho, Tong Yul;Yoon, Jae Hong;Fang, W.;Youn, Seok Jo;Youn, Kuk Tae;Suh, Chang Hee;Hwang, Soon Young;Ha, Sung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.

Minimization of Porosity in Ceramic Coating on a Hydraulic Cylinder (유압실린더 세라믹코팅 기공률 최소화 방안)

  • Jung, Youngho;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.4
    • /
    • pp.63-71
    • /
    • 2010
  • The best way to prevent the corrosion of piston rod is a selection of quality of the material and method of construction which minimize the porosity. The high velocity oxy fuel(HVOF) method, which generates lower porosity than existing plasma spray, was applied to ceramic laminated bond layer. Porosity percentage fell to bellow 2%, lower than that of plasma spray at 7%. Coating material of ceramic-coated main layer was selected as the $Cr_2O_3$ affiliation material, which is more dense than $Al_2O_3$ affiliation. To fill up the pores formed after the coating process, we sealed the bond layer and main layer. Sealing process was performed twice, once after the coating and once after the grinding. Upon the anti-corrosion test on the sealed sample and on the non-sealed sample, it is confirmed that the sealed sample was not corroded for 1,000 hours while the non-sealed sample was corroded within 48 hours.

  • PDF

Selection of the Protective Coating Material for Blades of a Booster Fan in Desulfurization Plant (탈황설비용 부스터팬 블레이드의 코팅재질 선정에 관한 연구)

  • Jeong, Byeong-Yong;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • This study investigated the coating failure of the blades of booster fans for the 200 MW flue gas desulfurization plant. Although the arc sprayed SM8222 have been tried as blade coating materials aimed to apply as alternatives of Metcoloy(R)2 due to better corrosion-erosion resistance but it is failed. Bond strength tests and practical field experiences have demonstrated high velocity oxy-fuel(HVOF) coating method with Diamalloy 3004 as an alternative to Metcoloy(R) 2 arc spray.

  • PDF

Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings (HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

Optimal Process of WC-CoCr Coating manufactured by HVOF Thermal Spraying (초고속화염용사법으로 제조된 WC-CoCr코팅의 공정 최적화)

  • Song, Gi-O;Jo, Dong-Yul;Yun, Jae-Hong;Bang, Wi;Yun, Seok-Jo;Hwang, Sun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.171-172
    • /
    • 2007
  • 초고속용사법(HVOF)은 우수한 강도와 높은 경도를 가지는 치밀한 후막형성이 가능하고 피로특성 및 열충격에 대한 저항성이 양호하여 종래에 사용되어 오던 전기도금등을 통한 표면처리 방법을 대체시키고 있다. 항공기엔진의 주요부품, 초고속 air bearing spindle등의 내구성향상을 위한 WC계 분말을 이용한 표면처리의 공정을 다구찌실험계획법을 이용해 최적조건을 선정하였다.

  • PDF

A Study on High Temperature Oxidation of WC-20%CrC-7%NiCr coatings by HVOF Thermal Spray (HVOF 용사법으로 제조된 WC-20%CrC-7%NiCr 코팅의 고온산화연구)

  • Song, Gi-O;Toshio, Narita;Yun, Jae-Hong;Jo, Dong-Yul;Ju, Yun-Gon;Bang, Wi;Yun, Seok-Jo;Hwang, Sun-Yeong;Jeong, Gil-Bong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.93-94
    • /
    • 2007
  • 최근 사회전반에 걸쳐 사용되어온 경질 Cr 코팅이 제조 시 발암물질로 알려져 있는 $Cr^{+6}$을 발생함에 따라 이를 대체할 수 있는 표면개질법이 대두되고 있다. 또한 경질 Cr 코팅은 일반적으로 $200^{\circ}C$의 온도에서부터 경도가 서서히 감소되며 $400^{\circ}C$ 이상에서는 사용하기 어려운 제한점이 있다. 따라서 이 이상의 고온 안정성을 가지는 우수한 표면개질법에 관한 연구가 활발히 진행되고 있다.

  • PDF

Effects of Powder Mixing on the Mechanical Properties of Thermally Sprayed WC-Co-Cr Coating Layers (WC-Co-Cr 용사코팅시 분말의 혼합이 코팅층의 기계적 특성에 미치는 영향)

  • Lee, Chang Woo;Han, Jun Hyun;Shin, Myung Chul;Kwun, S.I.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.290-296
    • /
    • 2009
  • We report on the effects of mixing of powders with various particle sizes on fracture toughness and wear resistance of thermally sprayed WC-10Co-4Cr coating layers fabricated by HVOF (high-velocity oxygen fuel) process. The size and the mixing ratio of powders were changed in order to get high fracture toughness and wear resistance. The mixing of small amount of coarse powders with fine powders resulted in the highest fracture toughness and wear resistance due to the lowest porosity in coating layers.