• 제목/요약/키워드: HVDC transmission

검색결과 141건 처리시간 0.026초

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)

The Study on the Efficient HVDC Capacity Considering Extremely Low Probability of 765kV Double Circuit Transmission Lines Trip

  • Moon, Bong-Soo;Ko, Boyung;Choi, Jin-San
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1046-1052
    • /
    • 2017
  • The load on the power grid of South Korea is expected to grow continuously until the late 2020s, and it is necessary to increase the transfer capacity from the Eastern grid to the Seoul-Gyeonggi region by reinforcing the transmission network for the electric power system to remain stable. To this end, the grid reinforcement by two bipole LCC HVDC transmission systems have been considered on account of the public acceptability and high growth of the fault current level, even though an additional 765kV system construction is more economical. Since the probability of the existing 765kV double circuit transmission line trip is extremely low, a dynamic simulation study was carried out to estimate the efficient HVDC capacity able to stabilize the transient stability by utilizing the HVDC overload capability. This paper suggests the application plan to reduce the HVDC construction capacity with ensuring the transient stability during the 765kV line trip.

HVDC 해저케이블 고장점 탐지 사례 연구 (A Study on the HVDC Submarine Cable Fault Location Searching Case)

  • 문신용;김정대;장석한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.138-140
    • /
    • 2006
  • 한국전력공사(이하 한전)에서는 제주지역 전력공급의 안정을 위해 '98년부터 국내 최초로 육지전력 계통과 연계하여 장거리 해저케이블 송전선로를 건설하여 운영하고 있다. 해저케이블은 해저에 포설되고 외부적 환경에 견디기 위해 육상케이블과 다른 많은 보호층을 포함하고 있어 설비의 유지보수에 많은 제약사항을 안고 있다. 특히 해남${\sim}$제주 연계선로는 기술적 장점 때문에 AC송전 대신 HVDC 송전을 하고 있어 한단계 Upgrade된 설비운영 기술이 필요하다. 본 고에서는 HVDC 해저 케이블의 설비운영에 있어 선로의 고장시 케이블의 고장점 위치를 탐지하는데 중점을 두어 실제 고장점 탐지 사례를 중심으로 HVDC 해저 케이블 고장점 탐지 방법 및 시험 결과를 검토하고 향후 유사 고장 발생에 효과적으로 대응하기 위한 절차를 제시하였다.

  • PDF

HVDC ${\pm}500kV$ 가공 송전선로의 최적 도체방식 선정을 위한 전기환경특성 평가 (Assessment of the Electrical Environmental Characteristics to Decide Optimal Bundle Type for HVDC ${\pm}500kV$ Overhead Transmission Lines)

  • 주윤노;길경석;양광호;이성두;황기현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.520-526
    • /
    • 2006
  • Corona interferences, such as radio noise, audible noise and television noise, need to be taken into account in the design of HVDC transmission line conductor configuration. Therefore the line designer requires data from which to estimate the corona performance of any set of conductors. To get a sufficiently complete set of design data, it is necessary to examine the corona test of a large number of conductor geometries. This paper presents the results of corona cage test among three types of candidate conductors. It is quite clear from test results that the conductor geometries play an important role in establishing the magnitude of corona noise. Corona noise data from corona cage test are expressed as a statistical distribution of results obtained over long periods of time and various weather conditions. Therefore we can determine an environmentally-friendly conductor bundle for HVDC overhead transmission line. Based on this finding results, various simulations about HVDC line configurations, such as pole space and pole height, will be conducted. And then finally an optimal configuration for HVDC transmission line will be decided.

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • 한국산업융합학회 논문집
    • /
    • 제24권4_1호
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

실증시험선로를 이용한 도체귀로형 HVDC ±500 kV Double Bipole 가공송전선로의 이온류 특성 평가 (Ion Effects of HVDC ±500 kV Double Bipole Overhead Transmission Line with Metallic Return Conductor Using Full-scale Test Line)

  • 신구용;권구민;주문노;우정민
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.249-256
    • /
    • 2019
  • 국내에 향후 건설 예정인 도체귀로형 HVDC ±500 kV Double Bipole 가공송전선로의 최적선로 형상을 설계하고 송전선로에서 발생되는 전기환경장해를 검증하기 위해 실증시험장을 구축하여 1년간 전기환경장해 평가시험을 수행하였다. 또한, HVDC Double Bipole 실선로에서 인체의 지표면 전계인지도 평가시험을 통해 HVDC 실규모 실증선로 직하에서 인체가 직류 전계를 감지하는 임계값을 조사하여 HVDC ±500 kV Double Bipole 가공송전선로의 직류전계 설계기준안의 타당성을 검증하였다. HVDC ±500 kV Double Bipole 시험선로의 극형상은 전기환경장해와 운영관점에서 동일한 극성을 대각으로 배치하였으며, 국내 가공송전선로의 전기환경장해의 사회적인 수용성을 고려하여 선로에서 코로나방전이 거의 발생되지 않도록 소도체 방식은 6 도체를 선정하였다. 도체귀로형 HVDC ±500 kV Double Bipole 가공송전선로 방식인 Cardinal×6B를 적용한 실증시험결과, 선로 도체에서 코로나 방전이 거의 발생되지 않았으며, 따라서 지표면 전계와 이온전류밀도는 모두 국내 가공송전선로 설계 기준값을 만족하였다. 또한 선로직하에서 피조사자들에 대한 전계 인지도 평가결과, 피조사자들의 70%는 23 kV/m에 노출되어도 직류전계를 인지하지 못하는 결과를 나타냈다.

Calculation on the Ion Flow Field under HVDC Transmission Lines Considering Wind Effects

  • Wu, Jing;Gao, Sheng;Liu, Yuxiao
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2077-2082
    • /
    • 2015
  • Based on Deutsch assumption, a calculation method on the electric field over the ground surface under HVDC transmission lines in the wind is proposed. Analyzing the wind effects on the electric field and the space charge density the existing method based on Deutsch assumption is improved through adding the wind speed to the ion flow field equations. The programming details are illustrated. The calculation results at zero wind speed are compared with available data to validate the code program. Then the ionized fields which resulted from corona of ±800kV HVDC lines are analyzed. Both the electric field and the current density on the ground level are computed under different wind direction and speed. The computation results are in good agreement with measurements. The presented method and code program can be used to rapidly predict and evaluate the wind effects in HVDC transmission engineering.

HVDC 송전망이 대형발전단지의 과도안정도에 미치는 영향 분석 (Analysis of Effect of HVDC Transmission System on the Transient Stability)

  • 전혁모;전영환
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.1-8
    • /
    • 2016
  • The characteristics of Korean power systems are large capacity of generation sites and concentrated load in Seoul metropolitan area. According to the national generation facility plan, more generation facilities are needed to be constructed as the electrical demands are forecasted to increase. Moreover, the size of generation sites are expected to increase, too. Therefore transient stability problems become worse and worse. Recently, the necessity of HVDC has been raised to overcome the difficulty of constructing HVAC transmission lines. This paper shows the analysis of transient stability when HVDC transmission system is added to the power system consisting of large generation sites.

HVDC 송전을 이용한 동해안 신규전원의 수도권 계통 연계방안에 대한 연구 (A Study on the Impact of HVDC Transmission System to Interconnect Large-scale Power Generation Plants to Power Grid in Korea)

  • 한수영;권도훈;정일엽;임재봉
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1647-1656
    • /
    • 2013
  • Although the demand for electricity has been increasing these days, it becomes more difficult to find new sites for large-scale power generation plants near urban areas due to environmental and economic issues. Therefore, new power plants are forced off to rural or desolate coastal areas. As a result, there is significant regional imbalance in power generation and consumption between urban and rural areas in South Korea. This paper investigates the feasibility of high-voltage DC (HVDC) system as a candidate for electric power transmission system from east-coastal sites to metropolitan area. To this end, this paper analyzes transient stability and dynamic impact of a HVDC transmission system and compares the results to conventional high-voltage AC (HVAC) transmission systems via PSS/E simulation. This paper also examines the effect of HVDC system to voltage variation and low-frequency resonance in the neighboring buses in the grid using ESCR(Effective Short Circuit Ratio)과 UIF(Unit Interaction Factor) indices.

RTDS를 이용한 제주도 전력계통에서의 전압형과 전류형 직류송전 시스템 특성분석 (Characteristic analysis of LCC and VSC HVDC system in Jeju power system using RTDS)

  • 주창현;김진근;딘민차우;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.828-829
    • /
    • 2011
  • This paper performs a comparison analysis of two types of HVDC system in Jeju power system. A traditional HVDC transmission system had been composed of line commutated converter based on thyristors and the development of semiconductors enables to apply voltage source converter using IGBTs. The detailed parameters of Jeju power system were considered to make a similar condition with real system in real time digital simulator. Two types of HVDC transmission system were modeled and simulated to compare their characteristics in Jeju power system. The simulation results demonstrate that the VSC-HVDC system has more stable performance due to the fast response speed than LCC-HVDC when the transmission capacity was fluctuated.

  • PDF