• Title/Summary/Keyword: HVDC line

Search Result 86, Processing Time 0.025 seconds

Analysis of Electric field and Ion Characteristics on HVDC Overhead Transmission Line (초고압 직류가공 송전선로에서의 전계 및 이온류 특성분석)

  • Lim, Jae-Seop;Shin, Koo-Yong;Lee, Dong-Il;Ju, Mun-No;Yang, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1638-1643
    • /
    • 2010
  • HVDC is better economic method than HVAC in case of long distance transmission and it is possible to interconnect transmission lines regardless of difference of power frequency. The electrical environment problems of HVDC overhead transmission line are electric field, charged voltage, ion current and so on. For biopolar HVDC lines, most of the ions are directed toward the opposite polarity conductor, but a significant fraction is also directed toward the ground. These problems are major factor to design configuration of HVDC overhead transmission line. Therefore, It is necessary to test an environmental characteristics of HVDC overhead transmission line. In this paper, to assess the ion characteristic of HVDC transmission line, continuous measurements have been done on the biopolar single circuit line with ACSR 480mm2-6 bundle conductors of Gochang HVDC Test line. And then the ion characteristics were analyzed.

Performance Analysis of Hybrid Type HVDC Circuit Breakers in Voltage Source Converter based HVDC System (전압형 HVDC 시스템 적용을 고려한 Hybrid Type HVDC 차단기의 동작 특성 분석)

  • Khan, Umer Amir;Lee, Jong-Gun;Lim, Sung-Woo;Lee, Ho-Yun;Lee, Bang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.153-154
    • /
    • 2015
  • Voltage Source Converter HVDC (VSC-HVDC) are a better alternative than conventional thyristor based HVDC systems. Unfortunately, VSC-HVDC's full potential cannot be utilized up till now due to absence of suitable HVDC protection. Recently, hybrid HVDC circuit breakers (HDCCB) have been developed and successfully lab tested. However, their application and feasibility in VSC-HVDC needs to be investigated. In this research paper we have modelled an existing HDCCB and evaluated its impact on fault reduction and interruption in VSC-HVDC systems. The HDCCB was applied in Korean Jeju-Haenam VSC-HVDC system model and its impact was analyzed for HVDC line-to-ground and line-to-line faults. HDCCB successfully interrupted the fault current and prevented the damages to costly IGBTs and converter transformers.

  • PDF

Ion Effects of HVDC ±500 kV Double Bipole Overhead Transmission Line with Metallic Return Conductor Using Full-scale Test Line (실증시험선로를 이용한 도체귀로형 HVDC ±500 kV Double Bipole 가공송전선로의 이온류 특성 평가)

  • Shin, Kooyong;Kwon, Gumin;Ju, Munno;Woo, Jeong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • A full-scale test line was established to verify the electrical environmental interferences caused by the HVDC ±500 kV Double Bipole overhead transmission line with metallic return conductor, which is scheduled for construction in Korea and the fullscale test was conducted for one year. And through the human perception test of the DC electric-field under the HVDC Double Bipole line, the threshold value at which the human detects DC electric field was investigated to verify the validity of the design guide for the HVDC ±500 kV Double Bipole overhead transmission line. The polarity configuration of the HVDC ±500 kV Double Bipole test line was arranged diagonally with the same polarity in terms of the electrical environment disturbance and operation. The test line utilized the 6-bundle arrangement to prevent the corona discharge taking into account the domestic social acceptability. The test results show that the HVDC ±500 kV Double Bipole transmission line generated very little corona discharge from the conductors. Therefore, both DC electric field and ion current density met the domestic design guide for DC overhead transmission lines. Also, the human perception test of DC electric fields under the test line showed that 70% of participants did not recognize the DC electric field even when exposed to 23 kV/m.

Design of a laboratory-scale superconducting DC transmission line (모델급 초전도 직류 송전 선로의 설계)

  • Kim, Sung-Kyu;Dinh, Minh-Chau;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1102-1103
    • /
    • 2015
  • The researchers worldwide have been trying to apply high temperature superconducting wire for power system devices. High voltage direct current (HVDC) transmission system has been used for bulk and long-distance power transmission. The authors designed a laboratory-scale superconducting DC transmission line to investigate its applicability to an HVDC system. The superconducting DC transmission line was simulated in connection to a laboratory-scale HVDC system using PSCAD/EMTDC. The operating characteristics of the superconducting DC transmission line connected to HVDC system and the effects of the superconducting DC transmission line on HVDC system were analyzed and compared with the results of a conventional DC transmission line. The results of operating characteristics for the superconducting DC transmission line were discussed in detail.

  • PDF

Prediction and Analysis of Electrical Environmental Characteristics under ±500kV HVDC Double Bipole Transmission Line (±500kV HVDC 2회선 송전선로의 전기환경특성 예측 및 평가)

  • Woo, Jeong Min;Ju, Mun-No;Shin, Koo Yong;Kwon, Gu Min;Choi, Woo Jung;Lee, Jae Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.554-560
    • /
    • 2018
  • Since Korea has a small land area, it is expected to construct the conductor return type with neutral wire in the case of ${\pm}500kV$ HVDC double bipole transmission line. Therefore, in order to apply ${\pm}500kV$ HVDC double bipole transmission line with neutral wire in Korea, it is necessary to develop technology for insulation and environmental designs. In this study, radio interference, audible noise, electric field and ion current density according to the polarity arrangement were compared and assessed in the ${\pm}500kV$ HVDC double bipole transmission line with the conductor return method. And the optimum configuration of HVDC double bipole transmission line was determined from the viewpoint of electrical environment.

Assessment of the Electrical Environmental Characteristics to Decide Optimal Bundle Type for HVDC ${\pm}500kV$ Overhead Transmission Lines (HVDC ${\pm}500kV$ 가공 송전선로의 최적 도체방식 선정을 위한 전기환경특성 평가)

  • Ju, Mun-No;Kil, Gyung-Suk;Yang, Kwang-Ho;Lee, Sung-Doo;Hwang, Gi-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.520-526
    • /
    • 2006
  • Corona interferences, such as radio noise, audible noise and television noise, need to be taken into account in the design of HVDC transmission line conductor configuration. Therefore the line designer requires data from which to estimate the corona performance of any set of conductors. To get a sufficiently complete set of design data, it is necessary to examine the corona test of a large number of conductor geometries. This paper presents the results of corona cage test among three types of candidate conductors. It is quite clear from test results that the conductor geometries play an important role in establishing the magnitude of corona noise. Corona noise data from corona cage test are expressed as a statistical distribution of results obtained over long periods of time and various weather conditions. Therefore we can determine an environmentally-friendly conductor bundle for HVDC overhead transmission line. Based on this finding results, various simulations about HVDC line configurations, such as pole space and pole height, will be conducted. And then finally an optimal configuration for HVDC transmission line will be decided.

MEAC Method for Analysis of Power System Stability Improving Effect Considering Run-up SPS Function of HVDC (MEAC를 적용한 HVDC Run-up SPS의 안정도향상 효과분석)

  • Lee, Jae-Gul;Song, Ji-Young;Jang, Gil-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1454-1459
    • /
    • 2017
  • In spite of continuous increase of electric power demand and new generation plants, it is very difficult to install new transmission line. Therefore, it comes to be difficult to operate the power system stable, so it is required to find another way to get new transmission capacity. Because HVDC transmission system installation is the one of the best option for us, we have undertake the HVDC project in mainland. Buckdangjin-Goduck HVDC project(500kV, 3GW) is currently under construction and Eastern Power HVDC project(500kV, 8GW) is under the study for technical specification. Both of them have the Run-up SPS function for taking action of 765kV Transmission line fault. The Run-up SPS function increases the active power output of the HVDC rapidly when the transmission line between the power plant and network is tripped, thereby preventing the generator from overspeed and improving the power system stability. In this paper, we propose MEAC(Modified Equal Area Criteria) method based on traditional EAC method to quantitatively evaluate the effect of the HVDC run-up SPS function on the power system stability improvement.

The Study on The Complex Composition By SFCL and Power Equipments for Fault Detection in HVDC Line (HVDC 선로 내 초전도 한류기와 전력기기들의 복합 구성을 통한 고장 검출에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1113-1118
    • /
    • 2018
  • Protection in HVDC(High Voltage Direct Current) have the very fast velocity of fault detection. Because Fault in HVDC has the fast propagation, large currents, high interruption cost. The focus to velocity caused possibility of errors like a detection error like a high impedance fault. In this paper, Proposed complex composition for get the reliability and velocity. That used SFCL(Super Conducting Fault Current Limiter), Protection Zone and DTS(Distributed Temperature Sensing). The SFCL was detect the fault by quench and DTS&Protection Zone were perceive the detect by variation too. To examine the proposed method, PSCAD/EMTDC simulated. The results of simulation, proposed methods could the detect of fault to whole HVDC line. And that improved the reliability of fault clearing.

The basic concept design of HVDC pipe line (HVDC pipe line 기본 개념 설계)

  • Choi, Seung-Ho;Hong, Jun-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.429-430
    • /
    • 2015
  • HVDC 송전망의 형태는 가공선로(Overhead Transmission Line)와 지중선로(Underground Transmission line)가 있다. 가공선로는 비교적 건설비가 저렴하고 쉽게 설치 할 수 있다는 장점이 있지만 설치할 부지를 확보하기 어렵다는 단점이 있다. 또한 지중선로는 설치되는 지역의 외관을 해치지 않고 주변 환경에 크게 영향을 주지 않는다는 장점이 있지만 케이블을 매설하기 위해서 깊은 관로를 파야하며 이때 많은 비용이 발생하게 된다는 단점이 있다. 새롭게 제시하는 HVDC Pipeline은 두 가지 송전망과 다른 새로운 방식으로서 도로에 Pipeline형태로 HVDC케이블을 얕게 매설하거나 지표면에 도출시키는 방식이다. 도로를 이용함으로서 가공선로의 새로운 부지를 확보해야한다는 단점을 개선하고 깊은 관로로 인해 발생하는 지중선로의 높은 공사비용을 감소시킬 수 있는 방안이라고 생각한다.

  • PDF

The Development of System for Measuring Ion Generated from HVDC Overhead Transmission Line (초고압 직류 가공 송전선로에서 발생되는 이온 계측시스템 개발)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong;Lim, Jae-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2035-2040
    • /
    • 2008
  • The electrical discharge of high voltage direct current(HVDC) overhead transmission line generate audible noise, radio noise, electric field, ion current and induced voltage on the ground. These items are major factors to design environmentally friendly configuration of DC transmission line. Therefore, HVDC transmission lines must be designed to keep all these corona effects within acceptable levels. Several techniques have been used to assess interference caused by ions on HVDC overhead transmission line. In this study, to assess the ion characteristic of DC line, the ion current density and induced voltage caused by ion flow were measured by plate electrodes manufactured from a metal flat board and charged bodies, respectively. The charged body has two types of cylinder and cylindrical plate. From the results of calibration experiments, the sensitivity of flat electrode and charged body can be obtained. At present, the developed system is used to investigate the ion generation characteristics of Kochang DC ${\pm}500kV$ test line.