• Title/Summary/Keyword: HVAC control system

Search Result 141, Processing Time 0.033 seconds

A Study on the Development of Building Control and management System -Focusing on the Lighting Control and Monitoring system- (빌딩 제어 및 관리 시스템 개발에 관한 연구 -조명 제어 관리 시스템 구축을 중심으로-)

  • Cho, Sung-O
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.4
    • /
    • pp.110-118
    • /
    • 2007
  • Technology has been viewed at various stages of civilization as leading to future progress. The building, its services systems and management of the work process all contribute to the well-being of people within an organization. Productivity relies on there being a general sense of high morale and satisfaction with the workplace. Now buildings are considered as providing a milieu for human creativity. Flexibility, adaptability, service integration and high standards of finishes offer an intelligence threshold. Building Automation System(BAS) - controlled lighting systems may offer incremental energy saving. Conventional Lighting control systems often control equipment in a single room or over the limited area, because they are centralized control systems, which means that all the controlled circuits must be wired to a single control panel. The computers used by these systems are typically dedicated microprocess that perform only lighting control functions. By comparison, modern Building automation systems are distributed control system, which means that their computing hardware and software are distributed as a network that microprocessor-based control modules and standard PC. PLC(Programmable Logic controller) is extensible virtually without limits, so that all the lighting in a facility can be controlled by single, unified system - the same system that also can control and monitor the building's HVAC, security, and manufacturing processed, elevators, and more. A Building automation system can control light using schedules, manual controls, occupancy sensors, and photosensors, either singly or in combination. Building Lighting control and monitoring system will be for a energy saving and efficient building management system.

A Novel Development of Distributed intelligent Control Module Based on the LonWorks Neuron Chip for Air handling Units in the Heating, Ventilating and Air Conditioning (Neuron Chip을 이용한 공기조화설비 제어모듈 개발)

  • 홍원표;김동화;김중곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.251-257
    • /
    • 2003
  • In this paper, a new distributed intelligent control module based on LonWorks fieldbus for air handling unit(AHU) of heating, ventilating and air-conditioning(HVAC) is proposed to replace with a conventional direct digital control(DDC) with 32 bit microprocessor. The proposed control architecture has a excellent features such as highly compact and flexible function design, a low priced smart front-end and reliable performance with various functions. This also addresses issues in control network configuration, logical design of field devices by S/W tool, Internet networking and electronic element installation. Experimental results showing the system performance are also included in this paper.

  • PDF

A Study on protocol analysis between KTX control system and sub-devices (고속열차(KTX)제어시스템과 하부장치간 프로토콜 분석연구)

  • Kim, Hyeong-In;Jung, Sung-Youn;Kim, Hyun-Shik;Jung, Do-Won;Kim, Chi-Tae;Kim, Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.179-186
    • /
    • 2007
  • KTX control systems mutually control OBCS, ATC, MBU, TECA, MDT, ABU, HVAC, TRAE, PID and FDTR, KTX OBCS as master, and controls other sub-control devices as slave, using various serial lines. In order to analyze physical structure of various serial link lines and mutual data transmission structure, serial line analyzer is used in many ways. To use serial line analyzer, prior and professional technics about High Speed Train and experience of using device are necessary. In spite of difficult situation of space and environment where we work for maintenance of High Speed Train, in presenting basic structure about physical connection method aquired by sub-device serial line data collection and about communication data analysis, I hope that this research will be helpful for the person who work for similar area. Also, I hope that this research will help diagnostic work of High Speed Train, which is necessary for test run of independently developed High Speed Train.

  • PDF

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

A Measurement and Evaluation of Indoor Thermal Conditions in Spring of a Coastal Passenger Ship - 590-Passenger Ro-Pax Type (590인승 Ro-Pax형(型) 연안여객선의 선실 내 봄철 온열환경 측정평가)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Eun-Su;Do, Yo-Han;Choi, Yun-Seok;Cho, Jung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1170-1177
    • /
    • 2008
  • The purpose of this study is to measure and analyze the indoor thermal conditions in the spring of a korean coastal passenger ship which is 590-passenger Ro-Pax type built at 1997. Especially this study has focussed on the relations between the diffuser open ratio, which can be controlled by 12 steps, and the comfort. Followings are the results of this study. (1) The supply air volume to cabins are maximum 4.3 and 2 times more than design quantity when the diffusers in cabins are open 100% and 50%, respectively. (2) Regardless of diffuser open ratio, the supply air maintains constantly high temperature and below 10% of relative humidity through the experimental days. (3) All the cabins are not satisfied with the ASHRAE comfort criterion at the condition of 100% and 50% of diffuser open ratio, because of high temperature and low relative humidity. (4) At a low diffuser open ratio, number of cabins which satisfy the ASHRAE comfort criterion are increased. (5) Humidifying and dehumidifying, and hvac control system of each cabin must be reviewed and studied at the view of passengers to service more comfort environments.

Study for Interface Between EMU and PSD in Metro (도시철도의 전동차와 PSD 인터페이스 고찰)

  • Seon, Jong-Min;Jo, Eun-Je;Yang, Dong-Seok;Park, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1397-1404
    • /
    • 2011
  • Metro serves more than a basic function of transporting passengers between short distances but became a crucial part of civic culture due to the fact that citizens demand various facilities for better life style. Therefore, domestic metro cuts off train noise and air dust, provides pleasant platform surroundings by offering effective HVAC, and establishes PSD (Platform Screen Door) system to prevent falls into train tracks. To control and interlock EMU Door and PSD to avoid passenger complaint and revenue service obstructions, stability and reliability of on-board & wayside equipment are required foremost and each line needs to build optimum interface between on-board & wayside equipment. To control PSD, we would like to introduce examples of Busan Metro(BTC : Busan Transportation Corporation) which already utilizes interface between on-board & wayside equipment in various ways and consider optimum interface between on-board & wayside equipment in future PSD system.

  • PDF

Multi-physics analysis for the design and development of micro-thermoelectric coolers

  • Han, Seung-Woo;Hasan, MD Anwarul;Kim, Jung-Yup;Lee, Hyun-Woo;Lee, Kong-Hoon;Kim, Oo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.139-144
    • /
    • 2005
  • A rigorous research is underway in our team, for the design and development of high figure of merits (ZT= 1.5${\sim}$2.0) micro-thermoelectric coolers. This paper discusses the fabrication process that we are using for developing the $Sb_2Te_3-Bi_2Te_3$ micro-thermoelectric cooling modules. It describes how to obtain the mechanical properties of the thin film TEC elements and reports the results of an equation-based multiphysics modeling of the micro-TEC modules. In this study the thermoelectric thin films were deposited on Si substrates using co-sputtering method. The physical mechanical properties of the prepared films were measured by nanoindentation testing method while the thermal and electrical properties required for modeling were obtained from existing literature. A finite element model was developed using an equation-based multiphysics modeling by the commercial finite element code FEMLAB. The model was solved for different operating conditions. The temperature and the stress distributions in the P and N elements of the TEC as well as in the metal connector were obtained. The temperature distributions of the system obtained from simulation results showed good agreement with the analytical results existing in literature. In addition, it was found that the maximum stress in the system occurs at the bonding part of the TEC i.e. between the metal connectors and TE elements of the module.

  • PDF

Auto Alarm System of Replacement Period for Vehicle Cabin Filter & Interception System of High Concentration Dust (차량용 에어컨필터 교환시점 알림 시스템 및 과농도 먼지 차단 시스템)

  • Lee, Kyu-Se;Byeon, Seong-Uk;Kim, Yeong-Min;Park, Sung-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1035-1040
    • /
    • 2008
  • Replacement period for vehicle cabin filter of most automobiles is fixed without consideration of conditions of filter and environment. Auto alarm system of replacement period at vehicle cabin filter and interception system of high concentration dust were developed. Control program which is related with the AQS has been developed based on the circuit drive algorithm. This system is expected to be beneficial to passenger's health and to extend the life of the filter which regulates vehicle HVAC system by ventilation mode change at the time of high concentration dust.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Development of Optimal Control System for Lighting and HVAC(Heating, Ventilation, Air Conditioning) Using Energy Saving (에너지 절감용 조명 및 공조기기 최적제어 시스템 개발)

  • Jang, Woo-Sung;Song, Yeoung-Seok;Cho, Byung-Lok;Cho, Seok-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1029-1036
    • /
    • 2018
  • This paper is a study on the development of optimal control system for lighting and air conditioning equipment to save the energy in campus environment. In the case of controling system developed through this research, lighting and air conditioner are controlled by both information on the number of people entering and leaving the room through the motion sensor and image processing, and the information on temperature and humidity. In addition, energy saving is enabled by the results that are controlled through data integration monitoring and command execution functions according to the control signals.