• Title/Summary/Keyword: HV battery

Search Result 7, Processing Time 0.02 seconds

An Approach for High Voltage Battery Voltage Sensing of Plug-In Hybrids and Battery Electric Vehicle (플러그인 하이브리드 및 전기 자동차 고압배터리 전압 측정 방법)

  • Kwon, Youngsung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.140-144
    • /
    • 2019
  • This paper proposes an approach for measuring voltage of high voltage(HV) battery of plug-in hybrid electric vehicle(PHEV) and battery electric vehicle(BEV). The proposed methods use isolation resistor and isolation amplifier in order to measure high voltage which should be electrically separated from measuring circuit. In terms of practical applications their advantages and disadvantage are discussed and key design points are addressed by simulations. More importantly, the proposed methods are applicable to various applications such as on-board charger, inverter and battery management system (BMS) which are directly connected to HV battery in PHEV and BEV.

Single-Phase Multifunctional Onboard Battery Charger with Small DC-link Capacitors (작은 직류링크 커패시터를 갖는 단상 다기능 온보드 배터리 충전기)

  • Nguyen, Hoang Vu;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.186-188
    • /
    • 2018
  • In this paper, a single-phase multifunctional onboard battery charger with small DC-link capacitors is proposed, where the low-voltage battery charger is utilized as an active power filter to mitigate the inherent second-order ripple power when the high-voltage (HV) battery is charged from the grid. In this scheme, the large DC-link electrolytic capacitors of the HV battery charger can be eliminated without additional switches, leading to the reduction of cost and volume of the onboard battery charger. The validity of the proposed topology has been verified by the simulation results.

  • PDF

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

HV relay control of battery management system for electric vehicle (전기자동차 배터리 시스템의 고전압 릴레이 제어 연구)

  • Park, Junghwan;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • 본 논문에서는 전기자동차 고전압 시스템의 구성에 대하여 서술하고, 배터리의 에너지를 부하단의 액츄에이터에 전달 및 차단 역할을 수행하는 고전압 릴레이 동작에 대한 제어 알고리즘에 대하여 기술하였다. 또한 고전압 릴레이 제어시에 고려되어야 될 요소에 대한 이론적인 해석을 수행하였으며, 전기자동차의 고전압 시스템에 대한 모델링을 구현하고 스파이스 해석 툴을 통한 시뮬레이션으로 이를 검증하였다.

  • PDF

Effects of the Experimental Vehicles on the Greenhouse Worker′s Work Load (비닐하우스 작업시 승용 농작업차의 노동부담 경감효과)

  • Choi, Jung-Hwa;Seol, Hyang;Ryu, Kwan-Hee
    • Korean Journal of Rural Living Science
    • /
    • v.8 no.1
    • /
    • pp.7-13
    • /
    • 1997
  • In this study we examined the greenhouse worker's work load to test the efficiency of the developed vehicles (hand operated vehicle (HV), simple battery-powered autonomous vehicle (AV)). The subject of this study were healthy adult females who had experience in growing crops. We measured workers' heart rate, blood Pressure. rectal temperature, mean skin temperature, oxygen consumption and blood lactate level as a physiological index of work load. The results of this study are as follows : The test group using experimental vehicle showed the lower heart rate (mean$\pm$S.D. for HV, AV respectively 74$\pm$5, 75$\pm$3 beats/min, p<0.01) than the control group (84$\pm$8beat/min) not using experimental vehicle and the lower systolic blood Pressure (HV, AV respectively 109$\pm$8, 109$\pm$9 mmHg, p<0.01) than the control group (121$\pm$11 mmHg), and lower rectal temperature(HV, AV respectively 37.0$\pm$0.1, 36.8$\pm$0.2$^{\circ}C$, p<0.01) than the control group (37.0$\pm$0.2$^{\circ}C$), and the less oxygen consumption (HV, AV respectively 2.13$\pm$0.09, 1.66$\pm$0.52$m\ell$/kg/min, p<0.01) than the control group(2.43$\pm$0.12$m\ell$/kg/min), and the lower blood lactate level (HV, AV respectively 2.03$\pm$1.00, 1.66$\pm$0.52mmol, p<0.01) than the control group (2.43$\pm$0.12mmol). Judging from these results, these experimental vehicles for greenhouse workers can be confirmed as a useful tool. It is suggested that these vehicles would alleviate the peasant's syndrome including muscle fatigue and musculoskeletal disease usually caused by working in an uncomfortable posture.

  • PDF

Design of Low-Area DC-DC Converter for 1.5V 256kb eFlash Memory IPs (1.5V 256kb eFlash 메모리 IP용 저면적 DC-DC Converter 설계)

  • Kim, YoungHee;Jin, HongZhou;Ha, PanBong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2022
  • In this paper, a 1.5V 256kb eFlash memory IP with low area DC-DC converter is designed for battery application. Therefore, in this paper, 5V NMOS precharging transistor is used instead of cross-coupled 5V NMOS transistor, which is a circuit that precharges the voltage of the pumping node to VIN voltage in the unit charge pump circuit for the design of a low-area DC-DC converter. A 5V cross-coupled PMOS transistor is used as a transistor that transfers the boosted voltage to the VOUT node. In addition, the gate node of the 5V NMOS precharging transistor is made to swing between VIN voltage and VIN+VDD voltage using a boost-clock generator. Furthermore, to swing the clock signal, which is one node of the pumping capacitor, to full VDD during a small ring oscillation period in the multi-stage charge pump circuit, a local inverter is added to each unit charge pump circuit. And when exiting from erase mode and program mode and staying at stand-by state, HV NMOS transistor is used to precharge to VDD voltage instead of using a circuit that precharges the boosted voltage to VDD voltage. Since the proposed circuit is applied to the DC-DC converter circuit, the layout area of the 256kb eFLASH memory IP is reduced by about 6.5% compared to the case of using the conventional DC-DC converter circuit.

Effect of $Li_4Ti_5O_{12}$ coating layer on capacity retention of $LiMn_2O_4$ as cathode materials of lithium ion secondary batteries for HEV application (HEV용 리튬 이차전지 양극물질 $LiMn_2O_4$$Li_4Ti_5O_{12}$ 코팅에 따른 영향)

  • Wai, Yin-Loo;Choi, Byung-Hyun;Jee, Mi-Jung;Lee, Dae-Jin;Shin, Jae-Su;Song, Kwang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.125-128
    • /
    • 2007
  • In these recent years, low cost and stable battery electrode materials have been studied for HV/HEV application. Spinel cathode material $LiMn_2O_4$ is widely studied as a promising cathode material of lithium ion secondary batteries because of it is low cost, easily to be prepared and capable to be operated in high voltage range. In this study, $LiMn_2O_4$ was undergoing surface modification with spinel lithium titanium oxide by sol-gel method in order to enhance its capacity retention. Properties of both unmodified and surface-modified $LiMn_2O_4$ were characterized by XRD, SEM, particle size analyzer while their cycling performance was tested with charge and discharge tester.

  • PDF