• Title/Summary/Keyword: HTS synchronous machine

Search Result 17, Processing Time 0.025 seconds

Conceptual Design Considerations of 1MW Class HTS Synchronous Motor (1MW 고온초전도 동기모터의 개념설계 고찰)

  • Baik Seung-Kyu;Sohn Myung-Hwan;Lee Eun-Yong;Kwon Young-Kil;Moon Tae-Sun;Park Heui-Joo;Kim Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.38-43
    • /
    • 2004
  • 1MW class superconducting synchronous motor is designed considering several conditions such as superconducting wire length, machine efficiency and size. As the machine is larger and larger, the superconducting machine shows the advantages more and more over the conventional machines. Although the advantages at 1MW rating are not so great, the design approach to get an appropriate result would be very helpful for larger superconducting synchronous machine design. Major design concerns are focused on reducing expensive Bi-2223 HTS(High Temperature Superconducting) wire which is used for superconducting field coil carrying the rating current around 30K(-243$^{\circ}C$) while the machine efficiency is higher than conventional motors or generators with the same rating. Furthermore, some iron cored structure is considered to reduce the HTS wire requirement without bad effect on machine performances such as sinusoidal armature voltage waveform, synchronous reactance and so on.

A study on design process of HTS bulk magnet synchronous motors

  • Jaheum Koo;JuKyung Cha;Jonghoon Yoon;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.1-4
    • /
    • 2024
  • This study explores the use of a bulk type high-temperature superconductors (HTS) as trapped field magnets in synchronous motors. A HTS bulk is examined for its ability to generate powerful magnetic fields over a permanent magnet and to eliminate the need for a direct power supply connection compared to a tape form of HTS. A 150 kW interior-mounted bulk-type superconducting synchronous motor is designed and analyzed. The A-H formulation is used to numerical analysis. The results show superior electrical performance and weight reduction when comparing the designed model with the conventional permanent magnet synchronous motor of the same topology. This study presents HTS bulk synchronous motor's overall design process and highlights its potential in achieving relatively high power density than conventional permanent magnet synchronous motor.

Performance evaluation of Superconducting synchronous motor via Finite element method (유한요소법을 이용한 고온초전도 동기모터 특성해석)

  • Baik, S.K.;Kim, S.W.;Sohn, M.H.;Jo, Y.S.;Seo, M.G.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.720-722
    • /
    • 2002
  • Superconducting synchronous motor using HTS(high-temperature superconducting) field windings has a lot of advantages over LTS(Jow-temperature superconducting) synchronous machine. A recently developed 5000[hp] HTS motor represents 1/2 reduction in weight and volume compared to an induction type conventional machine. Furthermore. 40% machine loss is reduced compared to the industry average. Based on a conceptual design, a 100[hp] HTS synchronous motor is modeled by F.E.M(Finite Element Method) and the performance is predicted in this paper

  • PDF

Design Considerations of 1MW Class HTS Synchronous Motor (1MW급 고온초전도 동기 모터 설계 고찰)

  • Baik S.K.;Sohn M.H.;Lee E.Y.;Kwon Y.K.;Moon T.S.;Kim Y.C.;Cho C.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.809-811
    • /
    • 2004
  • A 1MW class superconductng synchronous motor is designed considering several conditions such as superconducting wire length, machine efficiency and size. As the machine is larger and larger, the superconducting machine shows the advantages more and more over the conventional machines. Although the advantages at 1MW rating are not so great, the design approach to get an appropriate result would be very helpful for larger superconducting synchronous machine design. Major design concerns are focused on reducing expensive Bi-2223 HTS(High Temperature Superconducting) wire which is used for superconducting field coil carrying the rating current around 30K($-243^{\circ}C$) while the machine efficiency is higher than conventional motors or generators with the same rating. Furthermore, some iron cored structure is considered to reduce the HTS wire requirement without bad effect on machine performances such as sinusoidal armature voltage waveform, synchronous reactance and so on.

  • PDF

A parameter sweep approach for first-cut design of 5 MW Ship propulsion motor

  • Bong, Uijong;An, Soobin;Im, Chaemin;Kim, Jaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents a conceptual design approach of air-cored synchronous machine with high temperature superconductor (HTS) field winding. With a given configuration of a target machine, boundary conditions are set in the cylindrical coordinate system and analytic field calculation is performed by solving a governing equation. To set proper boundary conditions, current distributions of the field winding and the armature winding are expressed by the Fourier expansion. Based on analytic magnetic field calculation results, key machine parameters are calculated: 1) inductance, 2) critical current of field winding, 3) weight, 4) HTS conductor consumption, and 5) efficiency. To investigate all potential design options, 6 sweeping parameters are determined to characterize the geometry of the machine and the parameter calculation process is performed for each design options. Among design options satisfying constraints including >80 % critical current margin and >95 % efficiency, in this paper, a first-cut design was selected in terms of overall machine weight and HTS conductor consumption to obtain a lightweight and economical design. The goal is to design a 5-MW machine by referring to the same capacity machine that was previously constructed by another group. Our design output is compared with finite element method (FEM) simulation to validate our design approach.

Design Considerations of HTS Synchronous Motor arranged with Magnetic Core inside of Magnet Vessel (회전자 내부에 철심을 배치한 고온초전도모터 설계 방안)

  • 백승규;김석환;손명환;서무교;조영식;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.215-218
    • /
    • 2002
  • HTS motors and generators have some advantages over LTS machines because of higher operating temperature. Very low temperature nakes LTS machines need higher refrigeration cost and large facilities. However, HTS machines are expected to be comparable with conventional counterparts at smaller machine ratings than LTS generators in terms of efficiency and size. As the operating temperature increases, the magnetic flux density generated by HTS field coils decreases relatively. For example, 1000hp HTS synchronous motor developed in a few years ago has maximum field density of 1.5T. At this point, magnetic material used in conventional machines is able to pass magnetic flux easily with high permeability. In order to investigate the effect, we arranged magnetic core only inside of magnet vessel of a 100hp target machine. By way of FEM analysis, we concluded that the magnetic core can reduce amount of expensive BSCCO conductor so much.

  • PDF

Test Result Analysis of a 1MW HTS Motor for Industry Application

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, E.Y.;Kim, Y.C.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.33-36
    • /
    • 2009
  • A 1 MW class HTS (High-Temperature Superconducting) synchronous motor has been developed. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of neon thermo siphonmechanism and the stator (armature) coil is cooled by water through hollow copper conductor. This paper also describes evaluation of some electrical parameters from performance test results of our motor, which was conducted at steady state in generator mode and motor mode. Open and short circuit tests were conducted in generator mode while a 1.1 MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests. Load test was done upto rating torque during motor mode and efficiency was measured at each load torque.

Development of a 100 hp HTS Synchronous Motor (100마력 고온초전도 동기전동기 개발)

  • Sohn Myung-Hwan;Baik Seung-Kyu;Lee Eon-Young;Kwon Young-Kil;Jo Young-Sik;Kim Jong-Moo;Moon Tae-Sun;Kim Yeong-Chun;Kwon Woon-Sik;Park Heui-Joo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Korea Electrotechnology Research Institute(KERI) has successfully developed a 100hp-1800rpm-class high temperature superconducting(HTS) motor with high efficiency under partnership with Doosan Heavy Industries & Construction Co. Ltd. This motor has a HTS field winding and an air-cooled stator. The advantages of HTS motor can be represented by a reduction of 50% in both losses and size compared to conventional motors of the same rating. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. Independently, the rotor assembly was tested at the stationary state and combined with stator. The HTS field winding could be cooled into below 30K. Test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Also, load tests in motor mode driven by inverter were finished at KERI. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction. and experimental test results of the 100hp HTS machine.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

A 100 HP HTS Motor Design and the Performance Analysis (100 HP급 고온초전도 모터의 설계 및 성능 해석)

  • 백승규;손명환;김석환;이언용;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 2002
  • A 100 〔HP〕 rated synchronous motor with superconducting rotating field winding has been designed based on the formulated equations established from 2 dimensional magnetic field distributions in a cylindrical coordinate The cross-section was drawn based on calculated design results via Fortran program and then modeled with FEM (Finite Element Method) to investigate the machine performances. First of all, the magnetic field distributions are analysed in many ways according to the field directions and the armature currents. Especially after the rotating Held winding is arranged with BSCCO-2223 high-temperature superconducting(HTS) pancake coils, the exerted magnetic field normally on the HTS tape is calculated through FEM. And the machine output power is calculated according to the torque ang1es which lie between the field and the armature main flux lines. Moreover, this Paper includes the eddy-current loss variations of a copper damper located between the field and the armature coils and design considerations of the 100 HP HTS motor utilizing ferro-magnetic material.