• Title/Summary/Keyword: HTS power cable

Search Result 216, Processing Time 0.046 seconds

Determination of a Substation and Installation Site for applying Superconducting Cable/FCL to Real Power Grid (초전도케이블/한류기 실계통 적용 변전소 및 설치위치 선정 기술검토)

  • Yang, B.M.;Won, Y.J.;Kim, B.H.;Kang, J.W.;Yoon, J.Y.;Lee, S.R.;Moon, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • In attempts to closely study the effect of high efficiency, friendly environment HTS(High Temperature Superconducting) cable and SFCL(Superconducting Fault Current Limiters) on power system, several projects were carried out around the world. Promising results have been achieved in terms of cable capacity and reliability. commercial HTS cable and SFCL, however, must not only be only be feasible, but meet practical requirements as well. To facilitate the transition of HTS cable technology from the Lab. to the Real Grid, a New project for applying 22.9kV HTS cables and SFCL to the commercial Power Grid supported by Government has just started in KEPCO. Target of this project is to operate two 22.9kV, 50MVA, 150MVA HTS cables and two 22.9kV 630A, 3000A SFCL in a KEPCO Grid in order to demonstrate its reliability and stable operation. This paper will present the technology for selecting appropriate site and its plan for installation & operating of 22.9kV HTS cables & SFCL in KEPCO Grid.

A Study on the characteristics about the Protective Coordination in application of conductive system of Superconductor Cable (배전급 초전도 케이블의 상전도계통 적용시 보호협조 특성연구)

  • Lee, Hyun-Chul;Ryu, Kyung-Woo;Hwang, Si-Dole;Sohn, Song-Ho;Lim, Ji-Hyun;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.184-186
    • /
    • 2008
  • In this paper, the protective coordination studied in application of HTS cable in conductive system. The protective coordination analyzed to HTS cable using the PSCAD/EMTDC. HTS cable simulated to be appling SFCL or not to be. The result was showed to be protective coordination graph in HTS cable and OCR curve at the power system fault. This graph was proposed to be power operation standard at the HTS cable fault.

  • PDF

The study on the DC Ic measurement and AC loss in the 22.9kV, 50MVA HTS power cable (22.9kV/50MVA급 고온초전도 전력케이블의 DC Ic 측정 및 교류손실에 관한 연구)

  • Choi, Suk-Jin;Lee, Sang-Jin;Sim, Ki-Deok;Cho, Jeon-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.808-809
    • /
    • 2008
  • 22.9kV 50MVA HTS power cable has been developed and tested by Korea Electrotechnology Research Institute and LS Cable Company and it was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program. In this paper, DC Ic of 100m HTS cable which is installed at Kochang testing station was measured and analyzed. A measurement technique of DC Ic used by resistance and inductance removal method is established. The HTS power cable is composed of 2 layers for transmission and 1 layer for shield. For the analysis of AC losses in an HTS power cable, 2-dimensional numerical calculation was carried out to define the magnetic field distribution. We calculated the magnetization losses in the HTS core of that cable from these fields. These calculated results are in accordance with those of experiment.

  • PDF

Over current characteristic analysis of superconducting model cable using 2G wire 344B (2세대 도체 344B를 사용한 초전도 모델 케이블에서의 과전류 특성분석)

  • Kim, Dae-Won;Kim, A-Rong;Kim, Jin-Geun;Park, Min-Won;Yu, In-Keun;Cho, Jeon-Wook;Sim, Ki-Deok;Kim, Seock-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.603_604
    • /
    • 2009
  • HTS tape is developed for the purpose of being applied to the power cable, motor and generator, etc. The resistance of conventional power cables is not changed a lot by over current condition. But HTS(High temperature superconductor)power cable has some different properties. The impedance of superconductor is changed due to the magnitude of current, temperature, and magnetic field. And the characteristics analysis of HTS power cable under many kind of fault conditions are important to apply real system. In addition the magnitude of over current is 10 times larger than rated current. In this paper, the characteristics of HTS power cable are analyzed when over current flows. Model cable used 2G wires was made and experimented. The results will be helpful to manufacture real HTS power cable.

  • PDF

Influence of external magnetic field on HTS cable conductor (외부 자계 인가에 따른 고온초전도 케이블 도체의 ?치 특성)

  • Seong Woo Yim;Si Dole Hwang;Je Myoung Oh;Byung Sung Han
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.284-287
    • /
    • 2003
  • Quench characteristics of HTS cable conductor due to external magnetic field were investigated. Firstly, the influence of critical characteristics of HTS tape on locally applied magnetic field was examined. Secondly, critical current of HTS tapes, which are wound on surface of former, were measured respectively, before the experiment for quench characteristics, Finally, 50mT and 100mT were applied to HTS cable conductor and quench characteristics were investigated through V-I curves. As the results, same as the result of HTS tape, HTS cable conductor showed strong dependence on external magnetic field with direction and magnitude.

  • PDF

Feasibility Study on the Development of $High-T_c$ Superconducting Power Cable System (고온초전도 케이블 시스템 개발에 관한 타당성 조사)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Choi, Hyo-Sang;Kim, Hye-Rim;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.172-174
    • /
    • 2000
  • This paper summarizes the feasibility study of HTS power cables in Korea, including the conceptual design of a 154 kV 1000 MVA class HTS cable system, and the relative economic evaluations between conventional and HTS cable systems in Seoul area. According to the results of the economic evaluations, the HTS cable system can reduce the construction work for 168km of underground transmission lines, saving 700 million USD of construction cost in 2010.

  • PDF

A protective coordination of HTS cable power system using EMTP-RV (초전도케이블 계통의 상정사고에 대한 보호협조 연구)

  • Lee, Hyun-Chul;Lee, Geun-Joon;Baek, Young-Sik;Yang, Beoung-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.209-210
    • /
    • 2011
  • This paper proposed protective coordination on HTS(High Temperature Superconducting) cable on 22.9kV distributed system. HTS cable transient model is developed and tested using EMTP-RV, system protective coordination is studied with ETAP. Possible contingency and protective scheme are considered real distribution system in Icheon substation. The simulation results was showed, in protective case to apply conventional relay, that appeared problem on HTS cable inner part. The HTS cable couldn't protection on contingency state of power system. It was using high-speed relay system instead of conventional relay system. Then, the HTS cable was protected contingency by circuit breaker.

  • PDF

Performance Test of Cooling System for the KEPCO HTS Power Cable (한전 초전도전력케이블 냉각시스템 성능시험)

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Lee, B.S.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2206-2210
    • /
    • 2007
  • As a power transmission line supplying power to a densely populated city, the high temperature superconducting (HTS) cable is expected to one of the most effective cables with a compact size because of its high current density. The verification of HTS power cable system have been progressed by KEPRI. A cooling system for a 3-phase 100m HTS power cable with 22.9kV/1.25kA was installed and tested at KEPCO's Gochang power testing center in Korea. The system consists of a liquid nitrogen decompression cooling system with a cooling capacity of 3kW and a closed circulation system of subcooled liquid nitrogen. Several performance tests of the cable system with respect to the cooling such as cooling capacity, heat load and temperature stability, were performed at several temperatures. Thermal cycle test, cool-down to liquid nitrogen temperature and warm-up to room temperature, was also performed to investigate thermal cycle influences. The outline of the installed cooling system and performance test results are presented in this paper.

  • PDF

A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation (3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구)

  • Lee, Geun-Joon;Hwang, Si-Dole;Lee, Hyun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..