• 제목/요약/키워드: HTS Magnet

검색결과 194건 처리시간 0.029초

BSCCO-2223 선재를 이용한 Prototype 영구전류스위치 시스템의 제작 (Fabrication of Prototype Persistent Current Switch System Using by BSCCO-2223 Tape)

  • 강형구;김정호;이응로;안민철;김호민;윤용수;오상수;주진호;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.72-75
    • /
    • 2001
  • The persistent current mode operation of HTS coils is one of the key technologies required for very high-field MRI magnets composed of LTS and HTS coils. But to date, the fabrication of persistent current mode system using HTS is not investigated well. In this paper, we fabricated the magnet and PCS using by BSCCO-2223 tape and jointed them with solder. The current decay behavior of the circuit was measured in liquid nitrogen by monitoring the magnetic field in the centre of magnet with a Hall sensor. To enhance the characteristic of persistent current mode system, superconducting joint method should be investigated.

  • PDF

리니어타잎 초전도 전원장치의 동작특성 (Operating characteristics of linear type magnetic flux pump)

  • 정윤도;배덕권;윤용수;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.665-666
    • /
    • 2008
  • Inserted HTS (high temperature superconducting) coil is promisingly expected as a solution for achievement of higher fields such as GHz scale NMR magnet. However, HTS magnet causes persistent current decay in the persistent current mode and this decay should be compensated in order to keep stable magnetic field. As a solution for the decay in the HTS magnets, we proposed a new type superconducting power supply, i.e., linear type magnetic flux pump (LTMFP). The LTMFP mainly consists of DC bias coil, 3-phase AC coil and superconducting Nb foil. The compensating current in closed superconductive circuit can be easily controlled by the intensity of 3-phase AC current and its frequency. In this study, it has been investigated that the flux pump can effectively charge the current for various frequencies according to the different load magnets.

  • PDF

Analytic equation to energy conversion between electromagnetically coupled superconducting and copper coils

  • An, Soobin;Choi, Kibum;Bang, Jeseok;Bong, Uijong;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.36-39
    • /
    • 2019
  • This paper presents an analytic method to calculate energy conversion between electromagnetically coupled high-temperature superconducting and copper coils. The energy transfer from one coil to the other is commonly observed during quench of a no-insulation (NI) high temperature superconductor (HTS) magnet. Proper understanding of this phenomenon is particularly important to protect an NI HTS magnet, especially to avoid any potential mechanical damages. In this paper, analytic equations are obtained to estimate the energy transfer between the NI and copper coils. The well-known lumped-parameter circuit model is adopted provided that key parameters of the coils are given.

600kJ급 SMES용 전도냉각시스템 열해석 (Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class)

  • 홍용주;염한길;박성제;김효봉;고득용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1959-1963
    • /
    • 2007
  • SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution.

  • PDF

전도냉각형 HTS 자석의 전류도입부에서의 열적 퀜치 (Thermal Quench at Current Terminals of the Conduction-Cooled HTS Magnet)

  • 배준한;배덕권;박해용;손명환;성기철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.358-359
    • /
    • 2008
  • The heat generated in the high-Tc superconducting (HTS) devices is related with the cost efficiency and safe factor of HTS devices. This paper deals with the quench at the conduction-cooled joint between the HTS wire and copper terminals. The 3-D numerical simulation of this phenomenon was implemented and compared with the experimental results. The experiment was implemented with the HTS wire mounted on the copper blocks cooled with a Gifford McMahon (GM) cryocooler.

  • PDF

고화질소 냉각형 고온초전도마그네트 개발(I) (Development of HTS magnet cooled by solid nitrogen(I))

  • 오상수;하홍수;하동우;권영길;류강식;이해근;;한일용
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.19-21
    • /
    • 2000
  • We are developing portable type HTS magnet system cooled by solid nitrogen. This system have recooling and recharging capabilities. In this paper, we report preliminary test results obtained from the experimental solid nitrogen system and pancake magnet would with Bi-2223/Ag tapes, respectively. The operation period was sensitively dependent on the vacuum rate n the cryostat, size of SUS tube for flowing N_{2}$, and liquid nitrogen to cool the cryostat. The fabricated coil I_{c}$was 75 A at 20 K in self field.

  • PDF

1500 A, 400 mH급 초전도 직류 리액터용 극저온 냉각 시스템 구조 설계 및 열 해석 (Structure Design and Thermal Analysis of Cryogenic Cooling System for a 1500 A, 400 mH Class HTS DC Reactor)

  • 권다어반;레덧탕;성해진;박민원;유인근
    • 한국산업정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.31-41
    • /
    • 2018
  • 이 논문에서는 대 전류, 고온 초전도 직류 리액터를 위한 전도 냉각 시스템의 구조 설계에 대해 논의하고자 한다. 초전도 자석, 보 빈, 전류 리드, 고정용 구조물 그리고 열 교환기가 포함된 전도 냉각 시스템 부품의 크기를 3D CAD 프로그램을 사용하여 계산하였다. 또한, 최적의 설계 변수를 결정하고 열적-기계적 특성을 분석하기 위해서 유한 요소법 모델을 제작하였다. 리액터 자석의 운전 전류와 인덕턴스는 각각 1,500 A 400 mH이며, 이에 따른 극저온 냉동기의 냉각 용량을 결정하기 위해 초전도 직류 리액터에서 발생하는 열 부하를 계산하였다. 또한, 대 전류가 흐르는 1 단부전도 냉각 시스템의 작동 테스트를 수행하였다. 구리 바는 40 K까지 냉각되었고 초전도 리드는 안정적으로 작동했다. 실험 결과로써, 1 단부 영역의 총 열 부하는 190 W였다. 본 연구 결과는 상용 초전도 직류 리액터의 설계 및 제조에 있어 효과적으로 활용 될 것이다.

SMES 마그네트용 고온초전도 전류도입선 설계 (Design of HTS Current Lead for SMES Magnet)

  • 장현만;오상수;조전욱;조영식;하홍수;하동우;성기철;권영길;류강식;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권2호
    • /
    • pp.6-10
    • /
    • 2000
  • 1.5 kA class HTS current leads for a SMES magnet, which are connected to a conventional vapor cooled copper leads, were designed. The HTS leads are composed of Bi-2223/Ag-Au tapes and a stainless stell tube. The estimated critical current of the lead is about 1.6 kA at 77.3 K and in a self magnetic field, and the heat input to the liquid helium from the cold end of the 35 cm lead is 0.4 W/lead. It has been made clear that the heat input decreases with increase of the lead length and decrease of the warm end temperature and Ag-Au/SC ratio.

  • PDF

YBCO CC을 사용한 초전도전원장치의 요소특성 해석 (Characteristic analysis of components of a high temperature superconducting power supply using YBCO coated conductor)

  • 윤용수;조대호;박동근;양성은;김호민;정윤도;배덕권;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.40-45
    • /
    • 2009
  • Many superconductor applications such as MRI and SMES must be operated in persistent current mode to eliminate the electrical ohmic loss. This paper presents the characteristic analysis of the high temperature superconducting (HTS) power supply made of YBCO coated conductor (CC). In this research, we have manufactured the HTS power supply to charge the 0.73 mH HTS double-pancake magnet made of YBCO CC. Among the all design parameters, the heater triggerring time and magnet applying time were the most important factors for the best performance of the HTS power supply. In this paper, three-dimensional simulation through finite element method (FEM) was used to study the heat transfer in YBCO CC and the magnetic field of the magnetic circuit. Based upon these results, the final operational sequence could be determined to generate the pumping current. In the experiment, the maximum pumping current reached about 16 A.

초전도 벌크내의 전자장 해석 프로그램 개발 (Development of Program for Electro-Magnetic Analysis in Superconducting Bulk)

  • 한승용;한송엽
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.85-88
    • /
    • 1999
  • The study of HTS bulk in permanent magnet applications requires the calculation of forces acting on the bulk. Currents distribution in HTS Superconducting bulk is very important to determine this forces. We have made computer program to find this current distribution and this program is applied to some simple disc-shape HTS bulk being magnetised in a uniform field. The techniques for determination of currents are FEM analysis and iteration method.

  • PDF