• Title/Summary/Keyword: HTS Magnet

Search Result 194, Processing Time 0.031 seconds

Stability analysis of an uncooled segment of superconductor

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.8-12
    • /
    • 2017
  • If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

Basic Study of IPMSM with High-Temperature Superconducting Wire Rod

  • Okada, Kazuya;Morimoto, Shigeo;Sanada, Masayuki;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • It is important to improve the efficiencies of motors to overcome problems such as decreasing energy reserves and environmental pollution. Superconductors are promising for developing high-efficiency motors. However, superconducting wires must be kept in critical conditions and the AC loss needs to be minimized. In this paper, a design of a superconducting interior permanent magnet synchronous motor (IPMSM) is proposed that reduces the AC loss. The characteristics of superconducting and normal-conducting IPMSMs are compared. The proposed superconducting IPMSM has a low AC loss and a very high efficiency at low speeds.

R&D trends of high current REBCO conductor

  • Oh, Sang-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • So far, large-scale scientific devices such as nuclear fusion tokamaks and high energy circular accelerators were constructed using high-current conductors made of metallic superconducting wires. Recently, as REBCO superconducting wires usable in high magnetic fields have been developed by several companies, researchesto apply high current cable type REBCO conductors to next-generation large superconducting magnets were also started. High critical currents of several kA or more in high magnetic fields have been successfully demonstrated on test samples of REBCO cable conductors by several research groups. In this review article, the main features and properties of the representative high current REBCO conductors such as CORC(Conductor On Round Core), TSTC(Twisted Stacked-Tape Cable) and RACC(Roebel-Assembled Coated Conductor), which are currently being developed at abroad are briefly introduced. Research activities of high-current density REBCO MHOS(Multi HTS layers on One Substrate) conductor at KERI, whose structure is different from other cable type REBCO conductors are also shortly introduced.

The Electrical Insulation Design of 600kJ Conduction Cooled HTS SMES (600kJ 전도냉각 고온초전도 SMES의 전기절연 설계)

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Min, Chi-Hyun;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.67-71
    • /
    • 2007
  • The electrical insulation design of 600 kJ conduction cooled high-Tc superconducting magnetic energy storage (SMES) have been studied in this paper. The high voltage is applied to both ends of magnet of high-Tc SMES by quench or energy discharge. Therefore. the insulation design of the high voltage needs for commercialization. stability. reliability and so on. In this study. we analyzed the insulation composition of a high-Tc SMES. and investigated about the insulation characteristics of the materials such as Kapton. AIN. $Al_2O_3$. GFRP and vacuum in cryogenic temperature. Base on these results. the insulation design for 600 kJ conduction cooled high-Tc SMES was performed.

Research on a transport characteristic of Bi-2223/Ag superconducting tapes with time-varying magnetic field (시변자장 영향에 따른 Bi-2223/Ag 선재의 통전 특성에 대한 연구)

  • Choi S.J.;Lee S.J.;Kim H.J.;Sim K.D.;Cho J,W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.59-62
    • /
    • 2006
  • For electric power applications of Bi-2223/Ag superconducting tapes, a transport characteristic is important issue. A transport characteristic is strongly depends on the magnitude and direction of external time-varying magnetic field. To verify a effect of external magnetic field, we manufactured a prototype magnet and obtained transport characteristics with respect to the magnitude, the direction and the frequency of external magnetic field. The data acquired in this paper will be used as a source for the study of HTS electric power applications which is supposed to carry on.

A Study on a Splice Method of YBCO Coated Conductors with Curvature for HTS Magnet Application (고온초전도 마그넷 적용을 위한 YBCO Coated Conductor의 곡률 접합방법 연구)

  • Kim, Hyung-Jun;Jo, Hyun-Chul;Chang, Ki-Sung;Yang, Min-Kyu;Ahn, Min-Cheol;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • In the case of designing superconducting power apparatuses using the second generation high temperature superconducting wire, it is necessary to have a tape-splicing technique to achieve low splice resistance between coated conductor (CC) tapes. In this paper, an experimental splice method between YBCO CC tapes is proposed for a coil application. Splices were performed with a 37Pb-63Sn solder. YBCO samples were fabricated with various pressures and cooling rates. Joint resistances of the spliced samples of jointed YBCO CC tapes were measured and evaluated from V-I curves. In addition, optical micrographs were obtained to analyze the cross sectional microstructure of jointed samples.

Heat load characteristic analysis of conduction cooled 10kJ HTS SMES (전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석)

  • Kim, Kwang-Min;Kim, A-Rong;Kim, Jin-Geun;Park, Hae-Yong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $LN_2$ Cooling System

  • Park Dong-Keun;Ahn Min-Cheol;Yang Seong-Eun;Lee Chan-Joo;Seok Bok-Yeol;Yoon Yong-Soo;Ko Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.29-32
    • /
    • 2006
  • An advanced superconducting fault current limiter (SFCL) using $high-T_c$ superconducting (HTS) wire has been developed. The SFCL has a non-inductively wound magnet for reducing loss in normal state. Two types of non-inductively wound magnets, the solenoid type and the pancake type, were designed and manufactured by using Bi-2223 wire in this research. Short-circuit tests of the magnets were performed in sub-cooled $LN_2$ cooling system of 65 K. The magnets are thermally more stable and have a higher critical current in 65 K sub-cooled $LN_2$ cooling system than in 77 K saturated one. Because the resistivity of matrix at 65 K is lower than the resistivity at 77 K, the magnets generate a small resistance to reduce the fault current when the quench occurs. The magnets could limit the fault current to low current level with such a small resistance. The current limiting characteristic of the magnets was analyzed from the test result. The solenoid type was wound in parallel to make it non-inductive. The pancake type was also connected in parallel to be compared with the solenoid type in the same condition. The solenoid type was found to have a good thermal stability compared with the pancake type. It also had as large resistance as the pancake type to limit the fault current in sub-cooled $LN_2$ cooling system.

Fabrication and Test Results of Superconducting Magnet for Crystal Growing System (실리콘 웨이퍼 성장용 초전도 마그네트의 제작 및 성능평가)

  • Sim, K.D;Choi, S.J.;Kim, K.H.;Han, H.H.;Kim, H.J.;Jin, H.B.;Lee, B.K.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.824-827
    • /
    • 2002
  • 12inch 이상의 웨이퍼 성장에는 실리콘 용탕의 대류를 억제하여 웨이퍼의 순도를 높이기 위해 자기장 특히, 웨이퍼의 성장방향에 수직인 '수평자장'을 인가하는 방법이 사용된다. 현재 '자기장인가 방식', 특히 초전도를 사용한 자장인가 방식이 직경 1600mm에 이르는 용탕의 용액을 제어하는 유일한 방법으로 받아들여지고 있다. 본 논문에서는 12inch 실리콘 웨이퍼 성장용 초전도 마그네트 개발의 전단계로 개발중인 8inch 웨이퍼 성장용 수평자장형 초전도마그네트의 제작과정과 성능평가 결과에 대해 다루었다. 본 연구를 통해 액체헬륨의 증발을 최소화하기 위한 재응축형 극저온 용기에 대한 기술이 개발 되었으며, diode를 이용한 ��치보호부, HTS 전류리드의 ��치 protection부 등의 부속기술이 개발되었다. 초전도 마그네트는 내경 1400mm의 saddle type으로 이의 제작에 있어 많은 기술적 난재들을 경험해야 했다. 전체 시스템에 대한 성능평가 결과, 극저온용기 및 부속장치에 대한 결과는 만족스러웠으나, 코일부의 성능은 계획한 목표에 미치지 못했다.

  • PDF