• Title/Summary/Keyword: HTS(high temperature superconductor)

Search Result 178, Processing Time 0.026 seconds

Harmonic analysis and field quality improvement of an HTS quadrupole magnet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin;Jo, Hyun Chul;Kim, Do Gyun;Kim, Jongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.21-24
    • /
    • 2016
  • In recent years, the iron-dominated high-temperature superconductor (HTS) quadrupole magnets are being developed for heavy ion accelerators. Field analyses for iron-dominated quadrupole magnets were based on the normal-conducting (NC) quadrupole magnet early in the development for accelerators. Some conclusions are still in use today. However, the magnetic field of iron-dominated HTS quadrupole magnets cannot fully follow these conclusions. This study established an HTS quadrupole magnet model and an NC quadrupole magnet model, respectively. The harmonic characteristics of two magnets were analyzed and compared. According to the comparison, the conventional iron-dominated quadrupole magnets can be designed for maximum field gradient; the HTS quadrupole magnet, however, should be considered with varying field gradient. Finally, the HTS quadrupole magnet was designed for the changing field gradient. The field quality of the design was improved comparing with the result of the previous study. The new design for the HTS quadrupole magnet has been suggested.

A Study on the Equivalent Thermal Circuit for HTS Power Cable (초전도 전력케이블의 열 등가 회로에 관한 연구)

  • Lee, Su-Kil;Lee, Heung-Jae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • To develop the thermal analysis method for the thermal behavior of HTS power cable system, cooled with sub-cooled liquid nitrogen, new thermo dynamic model for HTS cable system is introduced. The introduced thermal model is mainly modified from the thermal circuit following to IEC60287 for underground power cable systems such as XLPE or paper wrapped insulation cables. The thermal circuits for HTS cables are similar to the forced cooled underground cable system but the major thermal parameters and the configuration is apparently different to the normal cable systems so there has been no proposals in this field of analysing method. In this paper, 154kV HTS cable system has been introduced as an aspects of thermal models and a thermal circuit is proposed for the fundamentals on the dynamic rating systems for the HTS cable system. By using the thermal circuit developed in this paper, the optimal controls on the sub-cooling system's capacity become possible and it is expected to make the efficiency of HTS cable higher than conventional static controls.

Design and Electromagnetic Analysis of a 15 MW Class Superconducting Wind Power Generator (15 MW급 초전도 풍력 발전기의 설계 및 전자기 해석)

  • Jung, Ga-Eun;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • A high-temperature superconducting(HTS) generators have been actively studied because of its advantages of weight, size, and efficiency. A large-scale superconducting wind power generator becomes a very low-speed high-torque rotating machine. In these machines, high electromagnetic force and torque are important issued. Two generators connected in series on one shaft design are one of the solution to overcome the high torque problem. In this paper, the authors design and analyze a 15 MW class HTS generator. The 15 MW HTS generator is confirmed in terms of magnetic field distribution and torque performance using a 3D finite element method. As a result, the designed generators generates less torque than a conventional generator. The designed 15 MW superconducting generator will be effectively utilized in the construction of the large-scale wind power generation system.

A study on the fabrication and characterization of high temperature superconducting(HTS) tapes in Bi-System (Bi-계 고온초전도 선재의 제조 및 특성 연구)

  • 정년호;성태현;한영희;한상철;이준성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.474-477
    • /
    • 2002
  • We performed a continuous heat treatment experiment for long Si$_2$Sr$_2$CaCuO$_{x}$ (Bi2212) superconductor tapes on copper substrates. A precursor that contains a mixture of Bi$_2$O$_3$, SrCO$_3$, and CaCO$_3$ powders was prepared and screen-printed on Cu tapes. The screen- printed tapes were thermally treated by consecutive processes with various temperature settings using an air-filled tube furnace. The diffraction patterns and the microstructures of the high temperature superconductor thick films were analyzed by X-ray diffractometry (XRD) and optical Microscopy respectively, and the critical temperatures of the superconducting thick films were measured. The critical temperatures of the superconducting films were measured to be about 77K, and the films'crystallographic c-axes were confirmed to be normal to the film surfaces by XRD and morphology observation. We also observed that the thick superconducting layer is formed and aligned on the copper substrate via partial melted state that consists of a liquid phase and a secondary phase.e.

  • PDF

DC Voltage-Current Characteristics of a High Temperature Superconducting Conductor (고온초전도체의 DC 전압 - 전류 특성)

  • Woo Ryu-Kyung;Li Zhu-Yong;Ma Yang-Hu;Choi Byoung-Ju;Park Kwon-Bae;Oh Il-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.49-53
    • /
    • 2006
  • A high temperature superconductor (HTS) has been developed for power applications such as power cables, fault current limiters and superconducting magnetic energy storage devices. For such applications it is required to understand the DC voltage-current characteristic of the HTS. which is important in analyzing AC loss and flux flow loss quantitatively. In this work, we have experimentally investigated influence of several factors, e.g. critical current density. degradation and AC external magnetic field, on the DC voltage-current characteristic. The measured results have been discussed in engineering application point of view.

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Optimal design of binary current leads cooled by cryogenic refrigerator (극저온 냉동기로 냉각되는 이중전류도입선의 최적설계)

  • Song, S.J.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

Comparative Study for the Unloaded Quality Factors of High-Tc Superconductor-Dielectric Resonators Measured by Using S-parameter Circle-fit Method and Lorentzian-fit Method (S-parameter circle fit 방법과 Lorentzian fit 방법으로 측정된 고온초전도 유전체 공진기의 Unloaded Quality Factor 비교)

  • Kim, M.J.;Lee, J.H.;Park, E.K.;Yang, W.I.;Jung, H.S.;Choi, Y.O.;Lee, S.Y.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 2007
  • Accurate measurements of the microwave surface resistance (Rs) of high temperature superconductor (HTS) films are important with regard to applications of HTS materials for wireless communications. As the surface resistance values of HTS films are usually extracted from the measured unloaded quality factor ($Q_0$) of resonators made of HTS films, it is essential to measure the resonator $Q_0$ with accuracy. The $TE_{011}\;mode\;Q_0$ of sapphire resonators with the endplates made of $YBa_2Cu_3O_{7-{\delta}}$(YBCO) film on $LaAlO_3$ is measured by using the S-parameter circle-fit method at a frequency of about 19.6 GHz and temperatures of 30 K to 90 K, which is compared with the measured values by using the Lorentzian-fit method. Good agreements are found between the two sets of $Q_0$ values measured by using the two different methods whether the resonator is used in a weak-coupling scheme or a strong-coupling scheme, showing reliability of both methods fur measuring the resonator $Q_0$ accurately. The $Q_0$ of sapphire resonators with a gap between the top plate and the rest of the resonator is also discussed.

  • PDF

A Comparative Study on the Effective Surface Resistance of High-$T_c$ Superconductor Films as Measured by Using the S-parameter Circle-fit and the Lorentzian-fit Methods (S-parameter Circle-fit과 Lorentzian-fit 방법으로 측정된 고온초전도체 박막의 유효표면저항 비교)

  • Kim, Min-Jeong;Jung, Ho-Sang;Lee, J.H.;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.146-151
    • /
    • 2008
  • Measurements of surface resistance ($R_s$) of high temperature superconductor (HTS) films with accuracy are essential for microwave applications of HTS materials. In using the dielectric resonator method, uncertainties in the unloaded quality factor of the resonator cause significant errors in the measured $R_s$ of HTS films. We compare the Rs values of $YBa_2Cu_3O_{7-{\delta}}$ films calculated from the $Q_0$ as determined from the Lorentzian fit with that from the $Q_0$ as determined from the S-parameter circle-fit at temperatures between 15 K and 77 K. The two sets of values appeared to differ by 5%, 7%, 6%, and 11% at temperatures of 15, 60, 70, and 77 K, respectively, from each other, implying that careful error analysis needs to be performed in obtaining the $R_s$ of HTS films by using the Lorentzian-fit method, with the ones determined from the S-parameter circle-fit used as the reference.

  • PDF

Electromagnetic design of 10 MW class superconducting wind turbine using 2G HTS wire

  • Kim, J.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • This paper introduces design processes of 10 MW class superconducting generator for wind Turbine. Superconducting generator can produce 5 times stronger magnetic field than permanent magnet at least, which enables large scale wind turbine to function as a lighter, smaller and more highly efficient system. These processes are targeted for higher efficiency and shorter high temperature superconductor (HTS) wires to fabricate 10 MW class superconducting generator. Three different approaches will be described in these design processes. First design process focuses on the number of rotor poles. Secondly, 270 and 360 A operating current of superconducting field coil can be adapted as a design parameter in this process. Lastly, 3 and 6 kV line to line voltage of stator coil will be used to design 10 MW class superconducting generator.