• 제목/요약/키워드: HTPB

검색결과 110건 처리시간 0.024초

고체추진제의 고압 연소속도 측정기법 (Burning rate measurement technique of solid propellant at high pressure)

  • 유지창;정정용;이경주;민병선;손영일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2005
  • 본 연구에서는 내부용적이 200cc와 700cc인 closed bomb법 이용하여 $1,000\sim30,000$ psi범위에서 고체 추진제의 연소속도를 측정하여 고체 추진제의 연소 특성을 고찰하였다. $5,000\sim15,000$ psi범위에서 두께 1mm의 디스크 형 시편으로 closed bomb법에 의해 측정한 연소속도가 $1,000\sim5,000psi$ 범위에서 strand burner법에 의해 측정한 연소속도와 잘 일치하였다. 200 cc와 700 co에서 측정된 연소속도는 bomb 부피에 상관없이 잘 일치하였다. HTPB/AP 추진제의 경우는 $5,000\sim7,000$ psi 범위에서 압력 지수가 급격히 증가하였다.

  • PDF

기체발생기용 질산암모늄 산화제 기반 복합고체추진제의 조성 및 기계적 물성 (A Study on the Formulation and Mechanical Properties of AN-based Composite Solid Propellant for an Application to Gas Generators)

  • 박정;김정수
    • 한국추진공학회지
    • /
    • 제13권5호
    • /
    • pp.1-6
    • /
    • 2009
  • 로켓시스템의 에너지원으로 적용할 수 있는 기체발생기용 복합 고체추진제의 개발과정을 기술한다. 80%의 고체입자 부하율과 양호한 유동성, 그리고 $-50^{\circ}{\sim}70^{\circ}C$에서 경화에 적절한 추진제 물성을 갖는 HTPB를 바인더로 하여, 낮은 화염온도, 적은 고체입자 잔사, 무독성 생성물의 추진제 제조가 가능한 AN을 제1종 산화제로, 탄도특성 제어에 필요한 AP를 제2종 산화제로 추진제 주요 조성이 구성된다. 기본조성을 근거로 하여 일련의 물성개선 시험이 수행되었으며 최대응력 8 bar 및 최대응력점 변형율 30%, 그리고 탄성계수 1000 psi 수준의 물성을 갖는 추진제 조성을 얻을 수 있었다.

저분자량 디올이 체인 연장제로서 HTPB 우레탄 탄성 중합체의 기계적 성질에 미치는 영향 (Effects of low molecular weight Diols as Chain Extender on the Mechanical Properties of HTPB Urethane Elastomers)

  • 홍명표;노만균;김용준
    • 대한화학회지
    • /
    • 제27권1호
    • /
    • pp.58-65
    • /
    • 1983
  • 체인 연장체로서 저분자량 디올의 5종(에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5펜탄디올, 1,6-헥산디올)과 경화제로서 TDI 및 IPDI를 사용하여 HTPB 우레탄 탄성 중합체를 제조하였다. 저분자량 디올의 농도, 저분자량 디올의 메틸렌기의 수, 벤젠고리를 소유한 TDI와 시클로헥산을 소유한 IPDI의 영향에 따른 기계적 성질(인장강도, 100% 탄성계수, 경도)의 변화를 고찰한 결과 저분자량 디올의 농도가 증가할수록 우페탄 농도의 영향으로 기계적 성질이 예상한 바와 같이 증가하였다. 경화제로서 IPDI를 사용한 경우는 저분자량 디올의 메틸렌기의 수가 증가할수록 가교화밀도 및 우레탄 농도의 감소로 인해 기계적 성질이 저하되었다. TDI를 사용한 경우는 IPDI와 달리 저분자량 디올의 메틸렌기의 수가 짝수인 경우와 홀수인 경우 그 기계적 성질이 서로 다르게 나타났으며 특히 수소결합의 영향으로 홀수인 경우는 메틸렌기의 수에 따른 지그재그 형상을 나타내었다.

  • PDF

HTPB 바인더를 이용한 미 경화 추진제의 연소 특성 (Burning Properties of Uncured HTPB Propellant)

  • 김낙현;김정은;홍명표
    • 한국추진공학회지
    • /
    • 제20권1호
    • /
    • pp.37-42
    • /
    • 2016
  • 본 연구에서는 HTPB를 적용한 고체추진제의 공정간 검사를 위해 경화제를 넣기 전과 넣은 후의 미 경화 추진제의 연소속도를 검토하였다. 그리고 경화제를 넣기 전 미 경화 추진제의 연소속도는 압력 1000 psi에서 약 9.7 mm/s 정도이며, 시간에 따른 연소속도 변화는 없었다. 경화제가 들어간 미 경화 추진제의 연소속도는 약 8.1 mm/s로 시간에 따라 느려지는 경향을 보였다. 경화반응 속도가 느린 미 경화 추진제는 시간에 따라 연소속도가 서서히 느려졌으며, 경화반응 속도가 빠른 미 경화 추진제는 연소속도가 빠르게 느려지는 것을 확인할 수 있었다. 그리고 완전히 경화된 추진제의 연소속도는 약 6.8 mm/s 정도로 가장 느린 것으로 나타났다.

고농축 복합화약 시뮬란트의 유변학적 특성: 벽면 미끄러짐, 틱소트로피, 유동불안정성 (Rheological Characteristics of Highly Concentrated Polymer Bonded Explosive Simulant: Wall Slip, Thixotropy, and Flow Instability)

  • 이상묵;홍인권;안영준;이재욱
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.213-219
    • /
    • 2014
  • 고분자 결합제로 hydroxyl terminated polybutadiene(HTPB)와 폴리에틸렌 플라스토머인 Exact를 사용한 고농축 복합화약 시뮬란트의 유변학적 특성을 연구하였다. 충전제로서 설탕 및 research department explosive(RDX)와 물리적 특성이 유사한 Dechlorane을 사용하였다. HTPB 사용시에는 가소제로 diethyl hexyl adipate(DEHA or DOA)를 첨가하기도 하였다. 농축 현탁계의 혼화는 시그마 블레이드가 장착된 회분식 혼련기(Rheomix 600, Haake) 를 사용하였고 유변학적 물성은 평판-평판 레오미터 및 모세관 레오미터를 이용하였다. 고농축 결합제/충전제 현탁계의 벽면 미끄러짐 현상, 전단 히스테리시스에 따른 틱소트로피 거동, 전단속도 및 충전제 첨가에 따른 유동불안정성 변화를 조사하였다.

HTPB/AP계 고체 추진제의 연소속도 증진 방안 연구 (Study on the Enhancement of Burning Rate of HTPB/AP Solid Propellants)

  • 이선영;류태하;홍명표;이형진
    • 한국추진공학회지
    • /
    • 제21권4호
    • /
    • pp.21-27
    • /
    • 2017
  • 본 논문에서는 HTPB/AP/Al계 추진제의 성능 개선을 위한 연소속도와 압력지수를 제어하기 위하여 연소특성에 관한 AP입자 사이즈 비율과 연소촉매로 사용된 Butacene 함량의 영향을 조사하였다. 23%의 $28{\mu}m$ Al과 3%의 Butacene을 포함하는 추진제 조성에서 연소속도와 압력지수는 $9{\mu}m$ AP 입자의 함량이 증가함에 따라 증가하였다. 그리고 Butacene을 함유하는 추진제는 비교적 낮은 압력지수 특성을 보임으로써 Butacene의 함량이 증가함에 따라 연소속도도 증가하였다. 그러나 Butacene의 함량에 의한 압력지수의 변화는 크게 나타나지 않았다.

고체연료 램젯용 HTPB 연료그레인에 첨가제와 점화보조제가 미치는 영향 (Effects of Additives and Ignition Support Material on HTPB Fuel Grains for Solid Fuel Ramjet)

  • 정우석;백승관;정연수;권태수;박주현;김인철;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.957-967
    • /
    • 2017
  • 첨가제와 점화 보조제가 적용된 고체연료 램젯 용 연료 그레인의 연소시험을 수행하여 점화 지연과 연소 효율을 확인하였다. 연료 그레인은 HTPB에 AP 파우더 15 wt.% 보론 입자 5 wt.%가 혼합된 형태로 구성되어 있다. 연료 그레인에 $NC/BKNO_3$와 Composite 추진제로 이루어진 점화보조제를 도포하여 우수한 점화성능을 확보하였다. 에탄올 블렌딩 과산화수소 가스발생기를 통해 램젯 연소실의 공기와 가깝도록 온도, 압력, 산소 조성을 조절한 산화제 가스를 유속 $200kg/m^2s$ 으로 흐르도록 설정하였다. 실험 결과, 점화보조제의 작동을 통해 연료그레인에서 0.5초의 점화 지연시간을 파악하였다. 또한 보론의 연소를 통해 8 bar의 일정한 연소실 압력과 0.86의 높은 연소 효율을 확인하였다.

  • PDF

후경화를 고려한 HTPB 고체 추진제의 실험적 노화평가 기법 연구 (Study on the Experimental Aging Estimation Technique for HTPB based Solid Propellant Considering Post Curing Effect)

  • 정규동;박재범;김신회
    • 한국추진공학회지
    • /
    • 제23권3호
    • /
    • pp.51-57
    • /
    • 2019
  • HTPB 고체 추진제 기계적 물성의 후경화 효과에 대하여 시편 시험을 통하여 평가하였다. 후경화 반응 완료 후 시편 가속노화 시험을 실시하여 Arrhenius 식의 계수를 획득하였다. 확인을 위하여 원통형 모사 충전체를 설계, 제작하여 가속노화 시험을 수행하였으며, 시험 후 추진제 표면 부위, 중앙 부위, 접착 부위에 대하여 시편을 채취하여 노화 물성을 평가하였다. 측정된 결과에 대하여, 획득된 가속노화 식으로 예측하여 비교하였다. 그 결과 JANNAF 시편 시험을 통한 가속노화 식은 추진제 재료의 노화를 잘 예측하였으나 접착 부위에서는 실제 측정 결과와 차이를 나타내었다. 따라서 실기형 추진기관에서 노화 시료를 채취하는 경우 시험 목적에 부합하도록 시편 채취 부위를 선정해야 한다.

HTPB 계열 추진제의 알루미늄 함량에 따른 충격감도 및 마찰감도 연구 (Impact Sensitivity and Friction Sensitivity of HTPB Based Propellant According to the Aluminum Content)

  • 김가희;박정호
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.60-65
    • /
    • 2021
  • 본 논문에서는 추진기관에 충전된 추진제의 알루미늄의 조성 불균일에 따른 추진제의 점화 가능성을 확인하고자 하였다. 추진제 내부의 알루미늄의 불균일한 분포를 모사하기 위해 알루미늄 함량을 14~20%까지 임의로 변경하여 충격감도, 마찰감도 시험을 수행하였다. 충격감도를 측정한 결과 50% 기폭 에너지 및 최소 기폭 에너지는 알루미늄 함량과 무관하게 50 J 부근의 값을 가진다. 이는 알루미늄 함량이 증가하여도 충격 자극에 추진제가 민감해지지 않는다는 것을 의미한다. 반면에 마찰감도 결과에서는 알루미늄 함량이 증가할수록 50% 기폭힘과 최소 기폭힘이 감소하여 추진제가 민감해지는 것을 알 수 있었다. 이는 추진제 발화 시의 "Hot Spot" 모델에 따라 충격 자극보다 마찰 자극에 의해 추진제 내부의 공간이 순간적으로 압축이 되어 발화가 되는 것으로 추정된다.

고체 추진제의 기계물성 최적화 연구 (A Study on the Mechanical Properties Optimization of Solid Propellant)

  • 최용규;류태하;김낙현;김정은
    • 한국추진공학회지
    • /
    • 제19권6호
    • /
    • pp.91-97
    • /
    • 2015
  • HTPB/AP/Al 계열의 혼합형 열경화 추진제를 적용한 로켓 연구개발에 있어서의 추진제 기계물성 규격을 정하는 일련의 과정을 고찰하고, 공정지수를 통하여 추진제 제조에서의 공정관리를 분석하였다. 이를 근간으로 기계물성간의 종속성을 분석하고 최적화 물성을 제시함으로서 불량률을 제거하는 공정 안전도 향상뿐만 아니라 추진제 그레인의 구조적 안전도 상승에도 기여할 것이다.