여러 품종을 소량으로 생산하는 소형 공장에서 불량품으로 인한 손실을 줄이기 위하여 부품의 양불량을 판단하는 시스템의 개발이 필요하다. 그러한 시스템은 계층형 시간적 메모리(HTM : Hierarchical Temporal Memory) 기술을 이용하여 개발할 수 있다. HTM은 인간 두뇌의 신피질(neocortex)의 동작 원리를 기계학습에 접목시킨 모델이다. HTM 기반의 기계학습 시스템을 사용하기 위해서는 훈련된 HTM 네트워크를 개발해야 하는데, 이를 위해서는 HTM 이론에 대한 지식이 필요하다. 본 연구는 이 HTM 기술을 부품의 이미지 인식에 적용하여 부품에 대한 양 불량을 판별하는 시스템에서, HTM 네트워크 개발을 지원하는 훈련시스템의 설계와 구현을 제시한다. 이 시스템은 HTM 이론에 대한 지식이 없어도 작업현장의 기술자가 HTM 네트워크를 정확히 훈련시킬 수 있으며, 부품에 대한 모든 종류의 HTM 기반의 판정시스템에 그대로 적용될 수 있다.
최근 Hardware Transaction Memory (HTM)으로 트랜잭션을 처리하는 기술이 각광을 받고 있다. 그러나 HTM의 처리 실패 요인 중 하나는 캐시를 사용하여 트랜잭션을 처리하여 용량에 제한이 존재한다. 이러한 이유로 long 트랜잭션의 경우 용량을 초과하여 처리가 불가능한 경우가 빈번히 발생한다. 이를 해결하기 위해 본 논문에서는 long 트랜잭션 처리를 위한 HTM 기반 트랜잭션 분할 기법을 제안한다. 제안하는 기법은 먼저 HTM 으로 수행하여 캐시 용량을 초과하는 경우, long 트랜잭션을 다수의 트랜잭션으로 분할한다. 분할된 트랜잭션이 수행이 완료되면, 부분 커밋(commit)을 수행하고 이에 대한 정확성을 제공하기 위해 validation을 수행한다. 분할된 모든 트랜잭션의 수행이 완료되면 최종적인 커밋을 수행한다. 이를 통하여 기존 HTM 으로 처리하기 불가능한 long 트랜잭션을 속도가 우수한 HTM을 기반으로 효율적인 트랜잭션 처리가 가능하다.
하나의 프레스로 여러 종류의 부품을 소량으로 생산하는 중 소형 공장에서는 부품 생산 과정에 발생하는 소리가 다양하게 나타난다. 이에 우리는 제품의 생산 순간의 소리를 인식하여 제품의 양 불량을 판별하는 시스템을 계층형 시간적 메모리(HTM Hierarchical Temporal Memory) 기술을 이용하여 개발하였다. HTM 이론은 인간 두뇌의 신피질(neocortex)의 동작 원리를 컴퓨터에 접목시킨 이론이다. 이는 실세계에 대한 시공간적인 패턴을 계층적으로 기억하는 것으로 기존의 인식 기술보다 여러 경우에 인식률이 뛰어난 것으로 알려져 있다. 우리는 이 HTM 기술을 소리 인식에 적용하여 부품에 대한 양 불량 판별 시스템을 개발하였다. 개발 결과를 검증하기 위해 실제 공장에서 부품 생산 순간의 다양한 소리들을 녹음하고, 소리 HTM 네트워크를 구성한 후, 학습과 훈련을 반복하여 해당 부품의 불량여부를 판정하도록 하였다. 그 결과 잡음이 많은 생산 현장에서도 판정의 정확도가 높은 것으로 확인하였다.
Kim, Hui-Seon;Lee, Chang-Ryul;Jang, In-Hyuk;Kang, Wee-Kyung;Park, Nam-Gyu
Bulletin of the Korean Chemical Society
/
제33권2호
/
pp.670-674
/
2012
The photovoltaic performance of solid-state dye-sensitized solar cells employing hole transport material (HTM), 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), has been investigated in terms of HTM overlayer thickness. Two important parameters, soak time and spin-coating rate, are varied to control the HTM thickness. Decrease in the period of loading the spiro-MeOTAD solution on $TiO_2$ layer (soak time) leads to decrease in the HTM overlayer thickness, whereas decrease in spin-coating rate increases the HTM overlayer thickness. Photocurrent density and fill factor increase with decreasing the overlayer thickness, whereas open-circuit voltage remains almost unchanged. The improved photocurrent density is mainly ascribed to the enhanced charge transport rate, associated with the improved charge collection efficiency. Among the studied HTM overlayer thicknesses, ca. 230 nm-thick HTM overlayer demonstrates best efficiency of 4.5% at AM 1.5G one sun light intensity.
하드웨어 트랜잭셔널 메모리(HTM)는 트랜잭션 처리를 위한 병렬 프로그래밍 패러다임을 크게 바꾸었으며, 최근 Intel에서 TSX를 제안함에 따라 HTM에 기반한 다수의 연구들이 수행되었다. 그러나 기존 연구들은 트랜잭션 처리에서 하나의 원인에 대한 충돌 예측만을 지원하며, 모든 워크로드에 대해 획일화된 TSX 환경을 제공한다. 이러한 문제점을 해결하기 위해, 본 논문에서는 멀티코어 인메모리 환경에서 트랜잭션을 처리하기 위한 효율적인 HTM 기법을 제안한다. 첫째, 제안하는 기법은 과거 트랜잭션 처리 정보를 수집한 매트릭스를 이용하여, HTM 실패시의 대비책 경로로써 STM 혹은 single lock을 선택한다. 둘째, 머신러닝 알고리즘 기반 재시도 정책을 제공함으로써, 워크로드 특성에 맞는 효율적인 트랜잭션 처리를 수행한다. 마지막으로 STAMP를 이용한 성능평가를 통해, 제안하는 기법이 기존 연구에 비해 10~20%의 성능 향상이 있음을 보인다.
트랜잭셔널 메모리는 트랜잭션 처리를 위한 병렬 프로그래밍 패러다임을 크게 바꾸었으며, 하드웨어 및 소프트웨어 방식에 따라 STM, HTM, HyTM으로 구분된다. 그러나, 기존 연구들은 모든 워크로드에 대해 획일적인 재시도 정책을 제공하는 문제점이 존재한다. 이러한 문제점을 해결하기 위해, 본 논문에서는 멀티코어 환경에서 샘플링 기반 유연한 재시도 정책을 이용한 하이브리드 트랜잭셔널 메모리 기법을 제안한다. 첫째, 제안하는 기법은 트랜잭션의 특성을 파악하여 HTM 혹은 STM을 선택하여 수행하거나, 블룸필터를 이용하여 동시에 HTM과 STM을 수행한다. 둘째, 제안하는 기법은 각 워크로드 내의 트랜잭션의 특성을 반영한 유연한 HTM 재시도 정책을 제공한다. 마지막으로 STAMP를 이용한 성능평가를 통해, 제안하는 기법이 기존 연구에 비해 10~20%의 성능 향상이 있음을 보인다.
2009년도에 Perovskite가 태양전지에 처음 적용된 이후, Perovskite를 기반으로 하는 태양전지는 급속한 발전을 이루고 있으나, 향후 상용화를 위해서는 추가적인 공정개선 및 제조 단가를 낮추는 노력이 필수적이다. 초창기 Perovskite의 증착 공정은 One step deposition 방법이 사용되었으나, Layer의 thickness, uniformity 등을 조절하기 어려워 Sequential deposition 방법으로 개선되었다. 하지만 결과적으로 초기방법 대비 추가공정이 발생함에 따라 시간 및 비용의 증가가 불가피하였다. 제조단가 측면에서는 Perovskite 태양전지를 구성하는 재료 중 HTM(정공수송물질)을 구성하는 Spiro-MeOTAD의 비용이 가장 비싸다. 따라서 저비용 태양전지를 위해서는 HTM이 없는 구조가 필요하다. 이 페이퍼에서는 Perovskite 물질이 고흡광 능력 외에 충분한 전하수송능력을 보유한다는 점에 착안하여, Gas Pressure Assisted Modified One Step Deposition을 이용한 HTM Free Perovskite를 제작하고 기존의 Sequential Deposition Method 통해 만들어진 Perovskite 태양전지와 비교/분석하였다.
We developed a high-throughput microscopy (HTM) method which enabled us to replace a conventional phase contrast microscopy (PCM) method that has been used as a standard analytical method for airborne asbestos. We could obtain the concentration of airborne asbestos fibers under detection limit by automated image processing and analysis using HTM method. Here we propose an improved image processing algorithm with variable parameters to enhance the accuracy of the HTM analysis. Since the variable parameters that compensate the difference of the brightness are applied to the individual images in our new image processing method, it is possible to enhance the accuracy of the automatic image analysis method for sample slides with low asbestos concentration that caused errors in binary image processing. We demonstrated that enumeration of fibers by improved image processing algorithm remarkably enhanced the accuracy of HTM analysis in comparison with PCM. The improved HTM method can be a potential alternative to conventional PCM.
RIO는 윈도우의 최신 네트워크 API로 낮은 부하와 지연을 통해 높은 IO 성능을 발휘하도록 설계되었으며. 고성능의 네트워크 IO를 요구하는 대규모 동시접속(MMO) 게임 서버에 적합할 것으로 기대된다. 또한 HTM은 기존의 멀티스레드 동기화 방식보다 생산성과 성능이 우수하여 MMO 게임 서버에 적용 시 성능향상이 예상된다. 본 논문에서는 MMO 게임 서버에 RIO를 적용함과 동시에 RIO의 성능을 최대한 끌어내도록 구조를 개선하고, 기존의 시야 처리 알고리즘을 HTM 방식으로 변경하여 서버의 성능을 향상시켰다. 결과적으로 동시 접속자 수를 19%가량 증가시켰으며, 벤치마킹 프로그램을 사용하여 이를 검증하였다.
주식 가격은 연속적으로 변화하는 스트림 데이터이다. 이러한 데이터의 특성상 시간의 흐름에 따라 주식 가격의 동향이 달라질 수 있기 때문에 주식 가격 동향의 예측은 가격이 갱신될 때 마다 연속적으로 이루어져야 한다. 본 논문은 HTM 모델을 이용하여 원하는 종목의 주식 가격 동향을 설정된 구간 간격에 따라 연속적으로 주식 가격 동향을 예측하는 새로운 방법을 제안한다. 이를 위해 먼저 정규화 과정을 거친 후 그 결과를 스트림 센서로 전달하는 선처리기와 연속적인 입력 데이터를 효과적으로 처리할 수 있는 스트림 센서를 제시한다. 또한, 각 레벨별 예측 결과를 저장하여 상위 단계로 전달하는 선 예측 저장 노드를 고안하고 이를 이용하여 주식 가격 동향을 예측하는 HTM 네트워크를 제시한다. 그리고 본 시스템을 실제 주식 가격으로 실험하여 그 성능을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.