• Title/Summary/Keyword: HT-29 colorectal cancer cells

Search Result 48, Processing Time 0.019 seconds

In vitro Anti-tumor Effect of an Engineered Vaccinia Virus in Multiple Cancer Cells and ABCG2 Expressing Drug Resistant Cancer Cells (재조합 백시니아 바이러스의 다양한 암세포 및 ABCG2 과발현 내성 암세포에 대한 항 종양 효과 연구)

  • Park, Ji Hye;Yun, Jisoo;Heo, Jeong;Hwang, Tae Ho;Kwon, Sang Mo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.835-846
    • /
    • 2016
  • Chemo-resistance is the biggest issue of effective cancer therapy. ABCG2 is highly correlated with multi-drug resistance, and represent a typical phenotype of multiple cancer stem-like cells. Accumulating evidence recently reported that oncolytic viruses represent a new strategy for multiple aggressive cancers and drug resistant cancers including cancer stem cell-like cells and ABCG2 expressing cells. In this study, we generated an evolutionally engineered vaccinia virus, SLJ-496, for drug-resistant cancer therapy. We first showed that SLJ-496 treatment enhanced tumor affinity using cytopathic effect assay, plaque assay, as well as cell viability assay. Next, we clearly demonstrated that in vitro SLJ-496 treatment represents significant cytotoxic effect in multiple cancers including colorectal cancer cells (HT-29, HCT-116, HCT-8), gastric cancer cells (AGS, NCI-N87, MKN-28), Hepatocellular carcinoma cells (SNU-449, SNU-423, SNU-475, HepG2), as well as mesothelioma cell (NCI-H226, NCI-H28, MSTO-221h). Highly ABCG2 expressing HT-29 cells represent cancer stem like phenotype including stem cell marker expression, and self-renewal bioactivities. Interestingly, we demonstrated that in vitro treatment of SLJ-496 showed significant cytotoxicity effect, as well as viral replication capacity in ABCG2 overexpressing cell. In addition, we also demonstrated the cytotoxic effect of SLJ-496 in Adriamycin-resistant cell lines, SNU-620 and ADR-300. Taken together, these findings provide us a pivotal clue that cancer therapy using SLJ-496 vaccinia virus might be new therapeutic strategy to overcome ABCG2 expressing cancer stem-like cell and multiple chemo-resistance cancer cells.

Novel SIRT Inhibitor, MHY2256, Induces Cell Cycle Arrest, Apoptosis, and Autophagic Cell Death in HCT116 Human Colorectal Cancer Cells

  • Kim, Min Jeong;Kang, Young Jung;Sung, Bokyung;Jang, Jung Yoon;Ahn, Yu Ra;Oh, Hye Jin;Choi, Heejeong;Choi, Inkyu;Im, Eunok;Moon, Hyung Ryong;Chung, Hae Young;Kim, Nam Deuk
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • We examined the anticancer effects of a novel sirtuin inhibitor, MHY2256, on HCT116 human colorectal cancer cells to investigate its underlying molecular mechanisms. MHY2256 significantly suppressed the activity of sirtuin 1 and expression levels of sirtuin 1/2 and stimulated acetylation of forkhead box O1, which is a target protein of sirtuin 1. Treatment with MHY2256 inhibited the growth of the HCT116 (TP53 wild-type), HT-29 (TP53 mutant), and DLD-1 (TP53 mutant) human colorectal cancer cell lines. In addition, MHY2256 induced G0/G1 phase arrest of the cell cycle progression, which was accompanied by the reduction of cyclin D1 and cyclin E and the decrease of cyclin-dependent kinase 2, cyclin-dependent kinase 4, cyclin-dependent kinase 6, phosphorylated retinoblastoma protein, and E2F transcription factor 1. Apoptosis induction was shown by DNA fragmentation and increase in late apoptosis, which were detected using flow cytometric analysis. MHY2256 downregulated expression levels of procaspase-8, -9, and -3 and led to subsequent poly(ADP-ribose) polymerase cleavage. MHY2256-induced apoptosis was involved in the activation of caspase-8, -9, and -3 and was prevented by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, the autophagic effects of MHY2256 were observed as cytoplasmic vacuolation, green fluorescent protein-light-chain 3 punctate dots, accumulation of acidic vesicular organelles, and upregulated expression level of light-chain 3-II. Taken together, these results suggest that MHY2256 could be a potential novel sirtuin inhibitor for the chemoprevention or treatment of colorectal cancer or both.

Ginseng berry polysaccharides on inflammation-associated colon cancer: inhibiting T-cell differentiation, promoting apoptosis, and enhancing the effects of 5-fluorouracil

  • Wang, Chong-Zhi;Hou, Lifei;Wan, Jin-Yi;Yao, Haiqiang;Yuan, Jinbin;Zeng, Jinxiang;Park, Chan Woong;Kim, Su Hwan;Seo, Dae Bang;Shin, Kwang-Soon;Zhang, Chun-Feng;Chen, Lina;Zhang, Qi-Hui;Liu, Zhi;Sava-Segal, Clara;Yuan, Chun-Su
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.282-290
    • /
    • 2020
  • Background: Ginseng is a commonly used herbal medicine in treating various medical conditions. Chronic gut inflammation is a recognized factor for the development of colorectal cancer (CRC). In this project, Asian ginseng berry polysaccharide preparations were used to assess their effects on CRC and related immune regulation mechanisms. Methods: Ginseng berry polysaccharide extract (GBPE) and purified ginseng berry polysaccharide portion (GBPP) were used to evaluate their activities on human HCT-116 and HT-29 CRC cell proliferation. Interleukin-8 secretion analysis was performed on HT-29 cells. Naive CD4 cell isolation and T-helper cell differentiation were performed and determined using flow cytometry for Th1 and Treg in addition to cell cycle and apoptotic investigation. Results: GBPE and GBPP significantly inhibited interleukin-8 secretion and cancer cell proliferation, inhibited CD4+IFN-γ+ cell (Th1) differentiation, and decreased CD4+FoxP3+ cell (Treg) differentiation. Compared to the GBPE, GBPP showed more potent antiinflammatory activities on the malignant cells. This is consistent with the observation that GBPP can also inhibit Th1-cell differentiation better, suggesting that it has an important role in antiinflammation, whereas Treg cells hinder the body's immune response against malignancies. Supported by cell cycle and apoptosis data, GBPE and GBPP, at various degrees, remarkably enhanced the anticancer activities of 5-fluorouracil. Conclusion: Data from this project suggested that Asian ginseng berry potentially has clinical utility in managing enteric inflammation and suppressing CRC through immunomodulation mechanisms.

Suicidal gene therapy with rabbit cytochrome P450 4B1/2-aminoanthracene or 4-ipomeanol system in human colon cancer cell

  • Jang, Su Jin;Kang, Joo Hyun;Moon, Byung Seok;Lee, Yong Jin;Kim, Kwang Il;Lee, Tae Sup;Choe, Jae Gol;Lim, Sang Moo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.118-122
    • /
    • 2015
  • Suicidal gene therapy is based on the transduction of tumor cells with "suicide" genes encoding for prodrug-activating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4-ipomeanol (4-IPO) or 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate.In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/2-AA or 4-IPO system were evaluated in HT-29 (human colon cancer cell). pcDNA-CYP4B1 vector was transfected into HT-29 by lipofection and stable transfectant was selected by treatment of hygromycin ($500{\mu}g/mL$) for 3 weeks. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed for confirmation of CYP4B1 expression in CYP4B1 gene transduced cell. The cytotoxic effects of CYP4B1 transduced cell were determined using dye-exclusion assay after treatment of 2-AA or 4-IPO for 96 hrs. Dye-exclusion assay showed that $IC_{50}$ of HT-29 and CYP4B1 transduced HT-29 was 0.01 mM and 0.003 mM after 4-IPO or 2-AA treatment at 96 hrs exposure, respectively. In conclusion, CYP4B1 based prodrug gene therapy probably have the potential for treatment of colorectal adenocarcinoma.

Antiproliferation effects of ethanol extract of garlic peels on human cancer cell lines (마늘껍질 70% 에탄올 추출물의 인간 암세포 증식억제 활성)

  • Son, Dae-Yeul
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.289-293
    • /
    • 2017
  • Ethanol extract of garlic peels (GPE) was investigated for its antiproliferative effects on human cancer cell lines. Human lung cancer cell line A549 treated with $500{\mu}g/mL$ GPE resulted in the growth inhibition of A549 by 90%. In stomach cancer cell AGS proliferation inhibition activity, GPE showed 45% and 71% inhibition of AGS growth at $1,000{\mu}g/mL$ and $2,000{\mu}g/mL$, respectively. GPE inhibited the growth of the breast cancer cells MCF-7 effectively at low concentration and showed 78% and 90% inhibitions of MCF-7 growth at $200{\mu}g/mL$ and $500{\mu}g/mL$, respectively. GPE showed very significant antiproliferation effect on liver cancer cell line Hep3B and inhibited Hep3B cell growth by 57% at $100{\mu}g/mL$, and the inhibition's rate increased up to 87% at $500{\mu}g/mL$. Antiproliferation effect of GPE on colorectal cancer cell HT-29 showed 15% reduction of HT-29 cell growth at $200{\mu}g/mL$ and the growth rate was reduced in a dose dependent manner up to $1,000{\mu}g/mL$. These results indicated that GPE had high antiproliferation effects on breast and liver cancer cell lines at low concentrations ($200{\mu}g/mL$), and by higher concentrations over $500{\mu}g/mL$, GPE inhibited the growth of A549 and HT-29. The results of our study suggested the potential use of garlic peels for use as an excellent antiproliferative substance for human cancer cells.

Evaluation of Enterotoxigenic Bacteroides fragilis from Colonic Washings from Patients Undergoing Colonoscopy

  • Van, Ni;Ahlberg, Ned;Jung, Byung Chul;Lee, Min Ho;Ahn, Seung Ju;Lee, In-Soo;Kim, Yoon Suk;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.362-368
    • /
    • 2012
  • Enterotoxigenic Bacteroides fragilis (ETBF) is an intestinal commensal bacterium implicated as a risk factor for colon cancer. The key virulence factor is a secreted toxin called B. fragilis toxin (BFT). In this study we used an in vitro bioassay to examine the prevalence of ETBF in colonic washings from patients with colorectal polyps and normal control patients. We found that 9.3% of polyp patients and 10.9% of non-polyp patients harbored ETBF, respectively. A total of nine ETBF clinical isolates were isolated and confirmed to be positive for the BFT gene by PCR analysis and the ability to induce IL-8 secretion in the colonic epithelial cell line HT29/c1. Two of the ETBF clinical strains were characterized further in vitro and in vivo. We found that the two ETBF clinical isolates induced E-cadherin cleavage in HT29/c1 cells and promoted colonic inflammation in C57BL/6 mice. Our results indicate that the prevalence of ETBF in polyp patients were similar in non-polyp patients suggesting that ETBF carriage does not positively correlate to polyp incidence.

The Effect of (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-Olide (LS-1) from Lobophyyum sp. on the Apoptosis Induction of SNU-C5 Human Colorectal Cancer Cells

  • Kim, Eun-Ji;Kang, Jung Il;Tung, Nguyen-Huu;Kim, Young-Ho;Hyun, Jin Won;Koh, Young Sang;Chang, Weon-Young;Yoo, Eun Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.623-629
    • /
    • 2016
  • (1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene, has anticancer activity against colon cancer cells such as HT-29, SNU-C5/5-FU (fluorouracil-resistant SNU-C5) and SNU-C5. However, the action mechanism of LS-1 on SNU-C5 human colon cancer cells has not been fully elucidated. In this study, we investigated whether the anticancer effect of LS-1could result from apoptosis via the modulation of $Wnt/{\beta}$-catenin and the TGF-${\beta}$ pathways. When treated with the LS-1, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3 and cleavage of poly (ADP-ribose) polymerase in SNU-C5 cells. Furthermore, the apoptosis induction of SNU-C5 cells upon LS-1 treatment was also accompanied by the down-regulation of $Wnt/{\beta}$-catenin signaling pathway via the decrease of GSK-$3{\beta}$ phosphorylation followed by the decrease of ${\beta}$-catenin level. In addition, the LS-1 induced the activation of TGF-${\beta}$ signaling pathway with the decrease of carcinoembryonic antigen which leads to decrease of c-Myc, an oncoprotein. These data suggest that the LS-1 could induce the apoptosis via the down-regulation of $Wnt/{\beta}$-catenin pathway and the activation of TGF-${\beta}$ pathway in SNU-C5 human colon cancer cells. The results support that the LS-1 might have potential for the treatment of human colon cancer.

Effect of Reduction in the Adipose Accumulation of Akkermansia muciniphila in Mature 3T3-L1 Adipocytes (성숙한 3T3-L1 지방세포에서 Akkermansia muciniphila의 지방축적 감소 효과)

  • Shim, Hyeyoon;Lim, Sookyoung;Shin, Joo-Hyun;Lee, Dokyung;Seo, Jae-Gu;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.19 no.2
    • /
    • pp.106-112
    • /
    • 2019
  • Objectives: The aim of this study was to observe the reduction of lipid accumulation by treatment with Akkermansia muciniphila extract on 3T3-L1 adipocytes. Methods: After treating pasteurized Akk. muciniphila strains in HT-29 colorectal cancer cell, the relative expression of interleukin (IL)-8, tumor necrosis factor-α, IL-6, and IL-1β mRNA was analyzed by real time polymerase chain reaction, respectively. 27 strains of Akk. muciniphila which have anti-inflammatory effects were selected. 3T3-L1 pre-adipocytes were treated with Akk. muciniphila for 24 hr and then measured the toxicity using water soluble tetrazolium salt assay. The cells were incubated for 4 days and then differentiated into adipocytes using the medium including adipogenic reagents for 10 days. The Akk. muciniphila was treated when the medium was exchanged for differentiation medium at 4th day and insulin medium at 6th day. To observe the lipid accumulation, the cells were stained with Oil red O dye and were measured using a spectrophotometer. Results: In the cytotoxicity test, the cell viability of 3T3-L1 pre-adipocytes was significantly increased compared to the control group which untreated with Akk. muciniphila, and there was no cytotoxicity of Akk. muciniphila at 1×107 CFU/mL. The results on Oil red O staining and absorbance measurements were showed a significant decrease in lipid accumulation in the group which was treated with Akk. muciniphila compared to the control group. Conclusions: In our results, Akk. muciniphila has the inhibitory effect of lipid accumulation in 3T3-L1 adipocytes. This suggests that Akk. muciniphila could be help to improve obesity.