• Title/Summary/Keyword: HSV 추출

Search Result 80, Processing Time 0.028 seconds

A Key-Frame Extraction Method based on HSV Color Model for Smart Vehicle Management System (스마트 차량 관리 시스템을 위한 HSV 색상모델 기반의 키 프레임 추출 기법)

  • Kwon, Young-Wook;Jung, Se-Hoon;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.595-604
    • /
    • 2013
  • Currently, registered number of imported vehicles is increasing rapidly over the years. Accordingly, environment improvements of vehicle maintenance company for maintenance of luxury vehicle such as imported vehicle are continuously being made. In this paper, we propose a key frame extraction method based on HSV color model for smart vehicle management system implementation to offer for customer reliability of maintenance vehicle. After automatically recognize the license plates of the vehicle using vehicle license plate recognition system when the vehicle come in the car center, we check the repair history and request of the vehicle based on it. We implement mobile services which provide extracted key frame images to the user after extract key frames from vehicle repair video. In addition, we verify the superiority of key frame extraction method by applying a smart vehicle management system. Finally, we convert the RGB color to HSV color to improve the performance of proposed key frame extraction scheme. As a result, we confirmed that our scheme is more excellence about 30% in terms of recall than RGB color model from the performance evaluations.

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

The SIFT and HSV feature extraction-based waste Object similarity measurement model (SIFT 및 HSV 특징 추출 기반 폐기물 객체 유사도 측정 모델)

  • JunHyeok Go;Hyuk soon Choi;Jinah Kim;Nammee Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1220-1223
    • /
    • 2023
  • 폐기물을 처리하는데 있어 배출과 수거에 대한 프로세스 자동화를 위해 폐기물 객체 유사도 판별이 요구된다. 이를 위해 본 연구에서는 폐기물 데이터셋에서 SIFT(Scale-Invariant Feature Transform)와 HSV(Hue, Saturation, Value)기반으로 두 이미지의 공통된 특징을 추출해 융합하고, 기계학습을 통해 이미지 객체 간의 유사도를 측정하는 모델을 제안한다. 실험을 위해 수집된 폐기물 데이터셋 81,072 장을 활용하여 이미지를 학습시키고, 전통적인 임계치 기반 유사도 측정과 본 논문에서 제시하는 유사도 측정을 비교하여 성능을 확인하였다. 임계치 기반 측정에서 SIFT 와 HSV 는 각각 0.82, 0.89(Acc)가 측정되었고, 본 논문에서 제시한 특징 추출 방법을 사용한 기계학습의 성능은 DT(Decision Tree)와 SVM(Support Vector Machine) 모두 0.93 (Acc)로 4%의 정확도가 향상되었다.

Content-based Image Retrieval using LBP and HSV Color Histogram (LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색)

  • Lee, Kwon;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.372-379
    • /
    • 2013
  • In this paper, we proposed a content-based image retrieval algorithm using local binary patterns and HSV color histogram. Images are retrieved using image input in image retrieval system. Many researches are based on global feature distribution such as color, texture and shape. These techniques decrease the retrieval performance in images which contained background the large amount of image. To overcome this drawback, the proposed method extract background fast and emphasize the feature of object by shrinking the background. The proposed method uses HSV color histogram and Local Binary Patterns. We also extract the Local Binary Patterns in quantized Hue domain. Experimental results show that the proposed method 82% precision using Corel 1000 database.

Vehicle Tracking System using HSV Color Space at nighttime (HSV 색 공간을 이용한 야간 차량 검출시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • We suggest that HSV Color Space may be used to detect a vehicle detecting system at nighttime. It is essential that a licence plate should be extracted when a vehicle is under surveillance. To do so, a licence plate may be enlarged to certain size after the aimed vehicle is taken picture from a distance by using Pan-Tilt-Zoom Camera. Either Mean-Shift or Optical Flow Algorithm is generally used for the purpose of a vehicle detection and trace, even though those algorithms have tendency to have difficulty in detection and trace a vehicle at night. By utilizing the fact that a headlight or taillight of a vehicle stands out when an input image is converted in to HSV Color Space, we are able to achieve improvement on those algorithms for the vehicle detection and trace. In this paper, we have shown that at night, the suggested method is efficient enough to detect a vehicle 93.9% from the front and 97.7% from the back.

A Study on Fast and Robust Techniques for Detection of Car Plate using HSV and Weighted Morphology (HSV와 가변 모폴로지를 이용한 빠르고 강인한 차량 번호판 검출에 관한 연구)

  • 이병모;박은경;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.365-370
    • /
    • 2002
  • 본 논문은 차량의 번호판 인식 시스템을 구축할 목적으로 번호판 추출을 컬러 정보를 이용하여 구현하였다. 본 실험은 특히 번호판 추출에 많은 장애 요인, 즉, 흐린날, 늦은 오후에 촬영된 차량, 번호판과 같은 색상을 가지는 차량, 그늘진 곳에 주차된 차량 그리고, 운행중인 차량에 대해서도 실험 대상으로 하였다. 그리고, 본 논문에서는 빠른 번호판 검출을 위하여 부분 영역에 대한 특정 픽셀을 추출하였고, 변형 모폴로지와 레이블링의 반복 적용을 통하여 번호판을 검출하며, 후처리를 통하여 보다 정확한 영역을 재보정 한다.

  • PDF

Study on the Quadcopter for Person Search using PID Control and HSV (PID 제어 및 HSV를 활용한 인명 수색용 쿼드콥터에 관한 연구)

  • Ji, Min-Seok;Kim, Byeong-Kwan;Kim, Jun-Woo;Park, Nae-Hyeok;Park, Hyoung-keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.139-146
    • /
    • 2022
  • Mountain accidents such as forest fires and missing people are increasing as hikers increase due to indoor activities restrictions caused by the prolonged COVID-19 incident. If a dangerous situation occurs at outside where rescue workers cannot reach, the search time for person can be reduced using a quadcopter. Considering this, in this paper, Multiwii is used to smoothly hover the quadcopter by setting optimized PID values of the x-axis, y-axis, and z-axis (Yaw) according to the change in the inclination of the gas. In addition, after installing Open CV on Raspberry Pie, the camera uses HSV color space to filter the color such as the description of the person, and uses a thermal imaging camera to receive thermal sensing images in real time in environments where color extraction is difficult. As a result, it was confirmed that hovering was possible at a height of 2 to 8 m, blue extraction was possible at a height of 5 m, and heat detection was possible at a distance of less than 10 cm.

A Study on the Blue-green algae Monitoring System using HSV Color Model (HSV 색상 모델을 활용한 녹조 모니터링 시스템에 관한 연구)

  • Kim, Tae-hyeon;Choi, Jun-seok;Kim, Kyung-min;Kim, Dong-ju;Kim, Kyung-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.553-555
    • /
    • 2015
  • In this paper, we proposed the blue-green algae monitoring system using the HSV(Hue Saturation Value) color model. The proposed system is to extract the image data from the camera of raspberry pie server by an wireless network, and it is analyzed through the HSV color model. We implemented a web server to provide the information of the XML data which was analyzed from the raspberry pie server. Also, the mobile app was developed to view the XML data on smart devices.

  • PDF

IFF Technique using the Color of Military Uniform (군복의 색깔을 이용한 피아식별 기법)

  • Heo, Woo-Hyung;Gu, Eun-Jin;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.23-25
    • /
    • 2013
  • 본 논문에서는 차세대 무인 군사 로봇에 활용할 수 있는 적군 및 아군 식별 수단으로 군복의 색깔을 이용한 기법을 제안한다. 이 기법은 전장지역의 군사로봇이 할 수 있는 피아식별법 중에 하나로 로봇에 부착되어 있는 카메라 외에 추가적으로 가져야 하는 장비가 필요 없기 때문에 추가비용 없이 효과적으로 적군을 포착할 수 있다. 군복의 색깔 차이를 식별하기 위해서는 먼저 HOG(Histogram of Oriented Gradients) 기법을 이용하여 사람을 검출한 다음, 이후 검출된 사람영역에 대하여 인체 비율을 고려해서 추출한 상의 부분의 색깔 데이터를 받는다. 이때 색공간은 HSV 공간으로 하여 조명의 변화에 덜 민감하도록 하였다. 북한 군복 색깔 영역의 pixel들만 추출하여 이진화를 한 후, 상의 전체 픽셀에 대한 개수 비율을 계산한다. 비율이 임계값 보다 높을 경우 적으로 인식한다.

  • PDF

A User Adaptation Method for Hand Shape Recognition Using Wrist-Mounted Camera (손목 부착형 카메라를 이용한 손 모양 인식에서의 사용자 적응 방법)

  • Park, Hyun;Shi, Hyo-Seok;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • This paper proposes a robust hand segmentation method using view-invariant characteristic of a wrist-mounted camera, and deals with a hand shape recognition system based on segmented hand information. We actively utilize the advantage of the proposed camera device that provides view-invariant images physically, and segment hand region using a Bayesian rule based on adaptive histograms. We construct HSV histograms from RGB histograms, and update HSV histograms using hand region information from a current image. We also propose a user adaptation method by which hand models gradually approach user-dependent models from user-independent models as the user uses the system. The proposed method was evaluated using 16 Korean manual alphabet, and we obtained increases of 27.91% in recognition success rate.