# SIFT 및 HSV 특징 추출 기반 폐기물 객체 유사도 측정 모델

고준혁<sup>1</sup>, 최혁순<sup>2</sup>, 김진아<sup>3</sup>, 문남미<sup>4</sup> 호서대학교 컴퓨터공학과 석사과정<sup>1</sup> 호서대학교 컴퓨터공학과 학사과정<sup>2</sup> 서울미디어대학원대학교 인공지능응용소프트웨어학과 교수<sup>2</sup> 호서대학교 컴퓨터공학과 교수<sup>3</sup>

junhyeok970306@gmail.com, hyuksoon2001@gmail.com, kkim.jinah00@gmail.com, nammee.moon@gmail.com

# The SIFT and HSV feature extraction-based waste Object similarity measurement model

JunHyeok Go<sup>1</sup>, Hyuk soon Choi<sup>2</sup>, Jinah Kim<sup>3</sup> Nammee Moon<sup>4</sup> Dept. of Computer Science, Hoseo University<sup>1,2,4</sup> Dept. of AI Software Engineering, Seoul Media Institute of Technology<sup>3</sup>

#### 요 약

폐기물을 처리하는데 있어 배출과 수거에 대한 프로세스 자동화를 위해 폐기물 객체 유사도 판 별이 요구된다. 이를 위해 본 연구에서는 폐기물 데이터셋에서 SIFT(Scale-Invariant Feature Transform) 와 HSV(Hue, Saturation, Value)기반으로 두 이미지의 공통된 특징을 추출해 융합하고, 기계학습을 통 해 이미지 객체 간의 유사도를 측정하는 모델을 제안한다. 실험을 위해 수집된 폐기물 데이터셋 81,072 장을 활용하여 이미지를 학습시키고, 전통적인 임계치 기반 유사도 측정과 본 논문에서 제시 하는 유사도 측정을 비교하여 성능을 확인하였다. 임계치 기반 측정에서 SIFT 와 HSV 는 각각 0.82, 0.89(Acc)가 측정되었고, 본 논문에서 제시한 특징 추출 방법을 사용한 기계학습의 성능은 DT(Decision Tree)와 SVM(Support Vector Machine) 모두 0.93 (Acc)로 4%의 정확도가 향상되었다.

# 1. 서론

특징점 추출 알고리즘은 최근에도 이미지의 유사도 를 측정하는 방법으로 사용하는 연구들이 진행되고 있다[1,2,3]. 특징점 추출 알고리즘인 SURF, SIFT, ORB을 이용해 이미지의 회전, 왜곡, 스케일 변화에 서의 매칭 성능을 비교한 연구가 존재한다[3]. 폐기 물 객체 또한 카메라 각도에 따라 왜곡, 스케일 변화 가 존재하기 때문에 SIFT를 통해 이미지의 특징을 추 출하였다. 하지만 SIFT는 회색조에서 특징을 추출하 므로 색상 정보가 무시될 수 있고, 이미지 전체에서 특징을 추출하기 때문에 배경에 대한 특징도 같이 추 출될 수 있는 문제가 존재한다.

본 논문에서는 문제 해결을 위해 HSV 색상 정보를 추출하여 SIFT 특징점과 융합하고, 배경을 제거한 이 미지 객체의 특징점을 더하는 두가지 방법을 제안한 다. 제안된 방법을 통해 추출된 특징점을 DT, SVM 모 델을 이용한 실험을 진행하여 그 성능을 검증하였다.

# 2.관련 연구

#### 2.1 SIFT 특징점 추출

디스크립터(Descripter) 특징 추출 방법은 객체의 관심 지점인 키포인트(keypoint)와 그 주변 특징 벡 터인 디스크립터를 이용한 특징 추출 방법이다[4]. SIFT 특징점 추출 방법은 디스크립터를 활용한 특징 추출 방법 중 하나로 회전, 크기 변화에 불변한 특성 을 가지고 있다[4]. 하지만, SIFT 특징점 추출 방법 은 회색조에서 추출되므로, 색상정보를 포함하지 않 기 때문에 추가적인 특징 추출 방법을 사용해야 한다.

## 2.2 HSV 히스토그램 특징 추출

HSV 히스토그램 특징 추출은 색조, 채도, 밝기 정 보를 가지는 히스토그램을 특징점으로 사용하여 색 분포를 추출하는 방법이다. 본 논문에서는 SIFT 디스 크립터 특징 벡터와 HSV 히스토그램 특징 벡터을 융 합하여 이미지쌍의 공통된 특징을 추출한다.

# 3. 폐기물 데이터 셋 구성

데이터 셋은 폐기물 데이터로 객체 유사도를 학습 하기 위해 여러 각도로 촬영된 이미지를 사용하였다. 폐기물 이미지 81,072 장을 이용하여 같은 객체로 구 성된 이미지 40,536 쌍과 서로 다른 객체로 구성된 이 미지 40,536 쌍을 제작하여 총 81,072 쌍의 학습 데이 터셋을 제작하였다. 또한, 학습 데이터, 검증 데이터, 테스트 데이터를 각각 7:2:1 로 나누어 학습하였다.

# 3.1 데이터 전처리



(그림 1) 배경을 제거한 폐기물 데이터 예시

SIFT, HSV 특징 추출은 이미지 전체에서 특징을 추 출하기 때문에, 배경의 특징이 같이 추출될 수 있다. Rembg는 U2net 기반의 배경 제거 라이브러리로 다양 한 연구에서 사용되어 지고 있다[5,6]. 본 연구 또한 배경을 제거하는 목적으로 (그림 1)과 같이 Rembg 를 사용하였으며, 배경을 포함한 이미지의 특징 벡터와 배경을 제거한 Rembg 이미지의 특징 벡터를 융합하여 유사도 측정 모델의 입력으로 사용하였다.

# 4. 유사도 측정 모델



(그림 2) SIFT, HSV 특징 추출 기반 유사도 측정 프로세스

본 논문에서 제시하는 SIFT, HSV 특징 추출 기반 유사도 측정 모델의 프로세스는 (그림 2) 와 같다.

이미지 셋을 원본 이미지 와 Rembg 이미지로 만들 고 SIFT 특징점 추출, HSV 히스토그램 분석을 통해 각각 특징을 추출하고 융합한다. 추출된 특징들은 유 사도를 측정하기 위해 사용되며, DT, SVM 모델의 입력 으로 사용되어 유사도를 예측한다.

#### 4.1 HSV 기반 특징 추출

이미지의 색상, 채도, 명도 특징을 추출하기 위해 HSV 색상 공간에서 히스토그램을 만들어 색상 분포를 확인하였다. Rembg 이미지의 경우 배경이 현실에 거 의 존재하지 않은 최소값으로 고정되어 이를 삭제하 는 후처리를 진행하였다. (그림 4)는 HSV 공간에서 색상, 채도, 명도 특징을 추출한 히스토그램이다. Rembg 이미지에서 배경의 색상 특징이 제거되어 노이 즈가 감소한 것을 확인 할 수 있다.



(그림 4) 폐기물 데이터 HSV 히스토그램 시각화

# 4.2 SIFT 기반 특징점 추출

SIFT 디스크립터 특징 추출 알고리즘은 스케일 공 간 구성, DOG(Difference of Gaussian)연산, 키포인 트 검출, 디스크립터 벡터 추출 순서로 진행된다[4]. 폐기물 데이터에서 크기 변화에 강한 키포인트를 검출하기 위해 이미지 피라미드를 활용하여 폐기물 데이터의 스케일 공간을 구성하고 DOG 연산을 통해 외 각선을 검출한다.

$$\mathbf{D}(\mathbf{x}) = \mathbf{D} + \frac{\partial D^T}{\partial x} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial x^2} \mathbf{x}$$
(1)

$$\hat{\boldsymbol{X}} = -\frac{\partial^2 \boldsymbol{D}^{-1}}{\partial \boldsymbol{X}^2} \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{X}} \qquad \mathbf{D}(\hat{\boldsymbol{X}}) = \mathbf{D} + \frac{1}{2} \frac{\partial \mathbf{D}^{\mathrm{T}}}{\partial \mathbf{X}} \hat{\boldsymbol{X}}$$
(2)

DOG 연산으로 검출된 외각선에서 키포인트의 후보 군을 찾고 식(1)을 이용하여 정확한 키포인트의 위치 를 탐색한다. 식(1)은 테일러 급수 2차 전개를 이용 한 식으로 D는 DOG 이미지, X는 키포인트 후보인 (x, y, octave)를 의미한다. 식(2)를 통해 위치조정 값 Â 도출하고, |D(Â)|의 값이 0.03 이하인 약한 키포인트 는 삭제하는 후처리를 진행한다.

이미지 회전에 강한 특징점을 검출하기 위해 키포 인트 주변 픽셀의 상대적인 그래디언트 방향 정보를 가지는 디스크립터를 생성한다. 스케일 공간에서의 키포인트와 디스크립터 생성을 통해 폐기물 이미지에 서 크기와 회전 변화에 강한 특징 벡터를 추출한다.

# 4.3 이미지 특징점 매칭

유사도를 측정하고자 하는 이미지 쌍을 SIFT, HSV 분석을 각각 진행하고, 검출된 특징 사이의 거리를 각각 측정한다.

$$\sum_{i} (\boldsymbol{A}_{i} - \boldsymbol{B}_{i})^{2} \tag{3}$$

SIFT 특징점 사이의 거리는 유클리드 거리식(3)을 이용하여 측정하고, 최근접 이웃 방식을 이용해 이웃 된 특징점의 거리가 각각 40%, 50%, 60%, 70% 이하인 매칭점 들의 개수를 각각 추출한다. (그림 5)는 이미 지 쌍에서 60% 임계치에서 매칭된 특징점을 시각화한 이미지이다. SIFT 매칭 역시 Rembg Image 매칭에서 배경에 대한 노이즈가 제거된 것을 확인할 수 있다.

Match Normal Image



Match Rembg Image



(그림 5) SIFT 특징점 매칭 시각화

HSV 히스토그램 비교 알고리즘은 바타차야 거리 측 정 방법을 사용했으며, 두 이미지의 히스토그램을 비 교하여 식(4)와 같이 구하게 된다.

$$d(H_1, H_2) = \sqrt{1 - \frac{1}{\sqrt{H_1 H_2 N^2}} \sum_i \sqrt{H_1(I) \cdot H_2(I)}} \quad (4)$$

SIFT의 매칭된 특징점 크기(4,)와 HSV 히스토그램 거리 측정 값 벡터크기(1,)를 더하여 (5,)크기의 특 징점 벡터를 생성하게 되며, 원본 이미지와 배경 제 거한 이미지의 특징점을 융합하여 총 (10,)크기의 특 징 벡터를 유사도 측정을 위한 기계학습의 입력으로 사용한다.

# 5. 실험

# 5.1 실험 환경

모든 실험은 Intel i9-11900K CPU, NVIDA GeForfce RTX 3090 GPU로 진행되었으며 Linux 20.04.2 LTS의 운영체제 버전과 CUDA version 11.10의 워크스테이션 에서 진행되었다.

# 5.2 임계치 기반 유사도 분석

<표 1>은 학습데이터와 테스트 데이터를 이용해서 원본 이미지와 Rembg 이미지에 대해 가장 높은 성능
을 기록하는 임계치의 acc 를 측정한 결과를 나타내
는 표이다. 임계치 기반으로 데이터의 acc 를 측정했
을 때, SIFT 특징점 에서는 0.5, 0.6 임계치에서
0.82 의 정확도를 보였고, HSV은 0.89 의 acc 로 SIFT
보다 HSV 에서 높은 성능을 보였다. 또한, 배경을 제
거하지 않은 이미지가 전체적으로 높은 성능을 보였다.

| Feature | Threshold | Train_acc | Test_acc | Rembg |
|---------|-----------|-----------|----------|-------|
| SIFT    | 0.4       | 0.79      | 0.78     | Х     |
| SIFT    | 0.5       | 0.82      | 0.82     | Х     |
| SIFT    | 0.6       | 0.82      | 0.82     | Х     |
| SIFT    | 0.7       | 0.79      | 0.79     | Х     |
| SIFT    | 0.4       | 0.67      | 0.69     | 0     |
| SIFT    | 0.5       | 0.69      | 0.69     | 0     |
| SIFT    | 0.6       | 0.69      | 0.69     | 0     |
| SIFT    | 0.7       | 0.66      | 0.65     | 0     |
| HSV     |           | 0.89      | 0.87     | X     |
| HSV     |           | 0.77      | 0.77     | 0     |

<표 1> 임계치를 이용한 유사도 분석 결과

#### 5.2 기계 학습을 이용한 유사도 분석

이미지쌍에서 추출한 특징 벡터를 기계 학습의 입 력값으로 사용한다. 기계학습 알고리즘은 scikit learn에서 구현된 DT와 SVM을 사용하였다. HSV와 SIFT 를 융합한 특징 벡터의 효용성을 실험하기 위해, SIFT 특징 벡터를 사용한 성능과 HSV 특징 벡터를 융 합하여 예측한 성능을 비교하였다.

DT의 하이퍼파라미터는 실험을 통해 <표 2>로 설 정하였으며, 실험 결과는 <표 3>와 같다.

<표 2> Decision Tree 의 하이퍼파라미터 설정

| Class weight | Balanced | Min samples leaf  | 11   |
|--------------|----------|-------------------|------|
| Criterion    | Gini     | Min samples split | 5    |
| Max depth    | 9        | Splitter          | Best |
| Max feature  | sqrt     |                   |      |

<표 3> Decision Tree 의 학습 결과

| Feature  | Background        | Acc  | Recall | Precision |
|----------|-------------------|------|--------|-----------|
| SIFT     | Normal            | 0.83 | 0.90   | 0.78      |
| SIFT+HSV | Normal            | 0.91 | 0.94   | 0.89      |
| SIFT     | Rembg             | 0.76 | 0.68   | 0.81      |
| SIFT+HSV | HSV Rembg         |      | 0.88   | 0.77      |
| SIFT     | Normal +<br>Rembg | 0.84 | 0.90   | 0.78      |
| SIFT+HSV | Normal +<br>Rembg | 0.93 | 0.95   | 0.92      |

SVM의 하이퍼파라미터는 실험을 통해 <표 4>로 설 6. 정 후 학습을 진행하였다.

<표 4> Support Vector machine 하이퍼파라미터 설정

| С     | 1000 | kernel | rbf |
|-------|------|--------|-----|
| gamma | 1.0  |        |     |

PCA를 이용한 차원 축소로 SVM을 시각화 하여 결 정 경계를 확인하였다. SIFT, HSV 특징 추출이 다른 이미지쌍 에서는 0에 가까운 숫자로 추출되기 때문 에, SVM 시각화 그래프 (그림 6) 역시 다른 이미지 쌍은 0에 가깝게 나타나는 것을 확인할 수 있다.



(그림 6) PCA 차원 축소를 이용한 SVM 시각화 (좌) 실제 데이터의 분포 (우) SVM 예측한 분포

| <丑 | 5> | Support | Vector | machine | 학습 | 결과 |
|----|----|---------|--------|---------|----|----|
|----|----|---------|--------|---------|----|----|

| Feature  | Background | Acc  | Recall | Precision |
|----------|------------|------|--------|-----------|
| SIFT     | Normal     | 0.82 | 0.94   | 0.75      |
| SIFT+HSV | Normal     | 0.91 | 0.94   | 0.89      |
| SIFT     | Rembg      | 0.76 | 0.68   | 0.82      |
| SIFT+HSV | Rembg      | 0.81 | 0.90   | 0.76      |
| SIFT     | Normal +   | 0.83 | 0.90   | 0.78      |
|          | Rembg      |      |        |           |
| SIFT+HSV | Normal +   | 0.93 | 0.96   | 0.901     |
|          | Rembg      |      |        |           |

DT의 학습 결과 <표 3> 와 SVM 학습 결과 <표 5> 모두 SIFT 특징점 추출만 사용한 모델보다 HSV 히스 토그램 분석을 같이 사용했을 때, 최소 5%, 최대 10% 의 성능 향상을 보여줬으며, 일반적인 임계치 기반 유사도 분석보다 높은 성능을 보였다. 또한, 배경을 제거한 이미지의 특징점을 단독으로 사용했을 경우에 는 원본 이미지 보다 낮은 성능을 보였으나, 원본 이 미지와 배경을 제거한 이미지를 같이 사용하였을 때 높은 성능을 보였다.

최종적으로 본 연구에서 제안하는 SIFT 특징점과 HSV 히스토그램 분석 특징 벡터를 같이 사용하고, 배 경을 제거한 이미지와 원본 이미지의 특징을 융합한 모델이 DT, SVM 모델에서 둘다 0.93 Acc 으로 가장 높 은 성능을 보였다.

#### 6. 결론

본 연구에서는 폐기물 이미지 데이터의 SIFT 특징 점 추출과 HSV 히스토그램 분석을 이용하여 이미지 쌍의 공통된 특징을 추출하고, 기계학습의 입력으로 사용하는 방법을 제시하였다. 임계치 기반 유사도 분 석과 기계학습 DT, SVM를 비교하였으며, 배경을 제거 한 이미지의 특징 벡터를 융합하는 방법을 추가적으 로 사용하였다. 임계치 기반 유사도 분석과 비교하여 acc 기준 4% 이상의 성능이 향상되었음을 확인하였다. 향후에는, 추가적인 연구로 인공 신경망을 이용한 유사도 모델을 비교 및 설계하여 보다 높은 성능의 모델을 제작할 수 있을 것이다.

#### ACKNOWLEDGEMENT

이 논문은 2023년도 정부(산업통상자원부)의재원 으로 공공혁신수요기반신기술사업단의 지원을 받아 수행된 연구임 (No. G02P18960001202)

#### 참고문헌

- [1] Liu, Y., Tian, J., Hu, R., Yang, B., Liu, S., Yin, L., & Zheng "Improved feature point pair purification algorithm based on SIFT during endoscope image stitching." Frontiers in Neurorobotics 16, 2022
- [2] Gupta, Surbhi, Munish Kumar, & Anupam Garg "Improved object recognition results using SIFT and ORB feature detector." Multimedia Tools and Applications 7, 34157-34171 2019
- [3] Karami, Ebrahim, Siva Prasad, and Mohamed Shehata "Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images." arXiv preprint arXiv:1710.02726 2017
- [4] David G. Lowe "Distinctive Image Features from Scale-Invariant Keypoints" International Journal of Computer Vision (IJCV) 60 91-110 2004
- [5] Fitria, M., Candra, Y., Al-Assad, M. H., Roza, S., & Dawood, R "A Deep Learning-Based Model for Classifying Sweetness Level of Sky Rocket Melon: A Preliminary Result." 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE). IEEE 2023.
- [6] Fan, M., Lu, W., Niu, W., Peng, X., & Yang, Z. "A Large-Scale Invariant Matching Method Based on DeepSpace-ScaleNet for Small Celestial Body Exploration." Remote Sensing 14.24 2022.