• Title/Summary/Keyword: HSS Endmill

Search Result 7, Processing Time 0.023 seconds

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

Impact of PVD Coating Technology on HSS Tool (HSS공구와 PVD 코팅기술의 영향)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.899-904
    • /
    • 2001
  • The impact of PVD coatings can be summed up in practical terms: this technology historically complements the best designed tool substrates to enhance cutting performance. PVD coatings are now incorporated in 25% of all HSS tools. The functionality is to extend the machining speed range, improve wear resistance at the cutting edge, and reduce friction at chip/tool contact areas to allow easier chip evacuation. These translate to a larger safe zone, as discussed in the failure mode diagram, for better productivity and higher reliability in machining operations of the customer. PVD coatings therefore represent an enabling technology that extends the application range of cutting tools in response to modern industrial needs. PVD coatings prolong the product life cycle of HSS tools and help this "mature" material to hold its territory against the advent of the newer hardmetal and ceramic tool materials. There is a lot of competitive life left particularly in PVD coated HSS endmills, drills, threading/tapping tools. PM HSS technology further increases the possibilities.ibilities.

  • PDF

High Speed Machining of Difficult-to-cut Material using Ball Endmill (볼 엔드밀을 이용한 난삭재의 고속가공 특성)

  • 손창수;강명창;이득우;김종관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.139-142
    • /
    • 1995
  • Inconel 718 is one of the most difficut workpiece for machining, So it is necessary to evaluate the machining characteristics of Inconel 718 In this study, High speed machining of this material was carried out with Tin coated WC ball endmill and TiN coated HSS ball endmill. The cutting force and shape of machined surface and cip type were investigated according to variation of cutting speed,feed rate and depth of cut

  • PDF

Five-axis Machining Characteristics of Titanium Alloy Forging Shape (티타늄합금 단조 형상의 5축 가공 특성에 관한 연구)

  • Jung, Hong-Il;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-99
    • /
    • 2022
  • Owing to the excellent corrosion resistance of titanium alloys, they are widely used as materials for aircraft components. However, in terms of machining, dimensional deformation methods vary significantly, such as forging, owing to their difficult-to-cut property and the uncontrollable vibration generated during machining. A method to minimize the vibration generated during machining by applying advanced tools and controlling the sequence of machining processes, which can improve the machinability and precision of titanium alloy-forged low-angle components, is proposed herein. Using the proposed tool and based on a process order experiment, the efficiency of the machining process is verified by measuring the dimensional deformation of the low-angle component.

A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface (실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증)

  • 김형우;서석환;신창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

Environment-Friendly Metal Cutting Technology using Cooled Air (냉각공기에 의한 환경 친화적 절삭가공기술)

  • Lee, Jong-Hang;Cho, Woong-Shik;Chung, Joon-Ki;Park, Ceol-Woo;Kim, Young-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.114-120
    • /
    • 2001
  • It is necessary to develop a new metal cutting technology which does not use cutting fluid, since cutting fluid can have undesirable effect on workers's health and working environment. For this to be possible, it is necessary to replace the conventional method of using cutting fluid, whose basic functions are removing chip and heat, and providing lubrication between tool and chip. In this work, cooled air is utilized in order to replace cutting fluid. Experiments were carried out while cutting workpiece with HSS flat endmill under a variety of supply conditions for cooled air. Also the performance characteristics of the air cooling system. which was built for the experiments, were carefully analyzed. For the reliable operation of air cooling system. moisture contained in the cooled air had to be removed before being supplied to the workpiece and tools. It was found that depending on the amount of its flow rate the temperature of cooled air changes at the time of injection from the nozzle. The flow rate of cooled air also plays an important role in removing the accumulated chip on the workpiece. After comparing the flank wear for the three cases of using cooled air, cutting fluid, and pure dry technique, it was demonstrated that the level of flank wear was similar for the cases of cooled air and cutting fluid. The pure dry technique, however, showed higher level of flank wear than cooled air.

  • PDF