• Title/Summary/Keyword: HSP

Search Result 798, Processing Time 0.03 seconds

Heat shock protein 90β inhibits apoptosis of intestinal epithelial cells induced by hypoxia through stabilizing phosphorylated Akt

  • Zhang, Shuai;Sun, Yong;Yuan, Zhiqiang;Li, Ying;Li, Xiaolu;Gong, Zhenyu;Peng, Yizhi
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific role of Akt and $Hsp90{\beta}$ in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by $Hsp90{\beta}$ overexpression but enhanced by decreasing $Hsp90{\beta}$ expression. $Hsp90{\beta}$ overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing $Hsp90{\beta}$ expression had opposite effects. The protective effect of $Hsp90{\beta}$ against apoptosis was negated by LY294002, an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by $Hsp90{\beta}$, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between $Hsp90{\beta}$ and pAkt. These results demonstrate that $Hsp90{\beta}$ may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylate BAD and reduce cytochrome C release.

Effect of Cryopreservation on the Heat Shock Protein 90 Expression in Mouse Ovarian Tissue (동결보존이 생쥐 난소 조직 내 Heat Shock Protein 90의 발현에 미치는 영향)

  • Lee, Sun-Hee;Park, Yong-Seog;Yeum, Hye-Won;Song, Gyun-Jee;Han, Sang-Chul;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • Objective : Heat shock protein family is related to protective mechanism of cells by environmental changes. This study was performed to evaluate the effect of cryopreservation on the heat shock protein 90 (Hsp90) expression in mouse ovarian tissue. Methods : Cryopreservation of mouse ovarian tissue was carried out by slow freezing method. The mRNA level of Hsp90 expression in both fresh and cryopreserved mouse ovarian tissue was analyzed by RT-PCR. The protein expression of Hsp90 was evaluated by Western blot analysis and immunohistochemistry. Results: The mRNA and protein of Hsp90 were expressed in both fresh and cryopreserved mouse ovarian tissue. The amount of Hsp90 mRNA was increased in cryopreserved ovarian tissue after 60 and 90 minutes after thawing and incubation. The amount of Hsp90 protein was increased in the cryopreserved ovarian tissue after 6 hours of the incubation in Western blot analysis. In immunohistochemical study, Hsp90 protein was localized in cytoplasm of oocytes and granulosa cells. Significant level of immunoreactive Hsp90 protein was detected in theca cells contrast to the weak expression in ovarian epithelial cells. Conclusion: This results showed the increase of Hsp90 expression in both mRNA and protein level in the cryopreserved mouse ovarian tissue. It can be suggested that Hsp90 may play a role in the protective or recovery mechanism against the cell damage during cryopreservaion.

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent (Hsp90을 이용한 유기용매에서의 과산화효소 안정화 연구)

  • Chung, Ja Hee;Choi, Yoo Seong;Song, Seung Hoon;Yoo, Young Je
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.92-96
    • /
    • 2006
  • Enzymes in organic media afford many advantages such as chiral synthesis and resolution, modification of fats and oils and production of biodegradable polymers. However, the nature of solvents influences the activity and stability of enzymes, and the presence of organic solvents always constitute a risk of enzyme inactivation. Heat-shock protein Hsp90, one of the molecular chaperone, was applied for understanding of enzyme inactivation and for increasing of enzyme stability in water-miscible organic solvent. Hsp90 showed stabilization effect on HRP in the 30% of DMSO, in the 30% and 50% of dioxane. Hsp90 also showed reactivation effect on the inactivated HRP by water-miscible organic solvent such as dioxane and DMSO. In addition, structural analysis using fluorescence spectrophotometry and circular dichroism showed that exposure of HRP in water-miscible organic solvent caused appreciable conformational changes and enzyme inactivation, and the unfolded HRP by water-miscible organic solvent was refolded by Hsp90.

Heat Shock Protein 90 Regulates the Stability of c-Jun in HEK293 Cells

  • Lu, Chen;Chen, Dan;Zhang, Zhengping;Fang, Fang;Wu, Yifan;Luo, Lan;Yin, Zhimin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.210-214
    • /
    • 2007
  • The 90-kDa heat shock protein (HSP90) normally functions as a molecular chaperone participating in folding and stabilizing newly synthesized proteins, and refolding denatured proteins. The HSP90 inhibitor geldanamycin (GA) occupies the ATP/ADP binding pocket of HSP90 so inhibits its chaperone activity and causes subsequent degradation of HSP90 client proteins by proteasomes. Here we show that GA reduces the level of endogenous c-Jun in human embryonic kidney 293 (HEK293) cells in a time and dose dependent manner, and that this decrease can be reversed by transfection of HSP90 plasmids. Transfection of HSP90 plasmids in the absence of GA increases the level of endogenous c-Jun protein, but has no obvious affect on c-Jun mRNA levels. We also showed that HSP90 prolongs the half-life of c-Jun by stabilizing the protein; the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocks the degradation of c-Jun promoted by GA. Transfection of HSP90 plasmids did not obviously alter phosphorylation of c-Jun, and a Jun-2 luciferase activity assay indicated that over-expression of HSP90 elevated the total protein activity of c-Jun in HEK293 cells. All our evidence indicates that HSP90 stabilizes c-Jun protein, and so increases the total activity of c-Jun in HEK293 cells.

Characterization of Heat Shock Protein 70 in Freshwater Snail, Semisulcospira coreana in Response to Temperature and Salinity (담수산다슬기, Semisulcospira coreana의 열충격단백질 유전자 특성 및 발현분석)

  • Park, Seung Rae;Choi, Young Kwang;Lee, Hwa Jin;Lee, Sang Yoon;Kim, Yi Kyung
    • Journal of Marine Life Science
    • /
    • v.5 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • We have identified a heat shock protein 70 gene from freshwater snail, Semisulcospira coreana. The freshwater snail HSP70 gene encode a polypeptide of 639 amino acids. Based on bioinformatic sequence characterization, HSP70 gene possessed three classical signature motifs and other conserved residues essential for their functionality. The phylogenetic analysis showed that S. coreana HSP70 had closet relationship with that of golden apple snails, Pomacea canaliculata. The HSP70 mRNA level was significantly up-regulated in response to thermal and salinity challenges. These results are in agreement with the results of other species, indicating that S. coreana HSP70 used be a potential molecular marker in response to external stressors and the regulatory process related to the HSP70 transcriptional response can be highly conserved among species.

Heat Shock Proteins in Heat Stressed Chickens (닭의 열 스트레스와 열충격단백질)

  • Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.219-227
    • /
    • 2020
  • As the earth's average temperature rises, crop and livestock productions are at risk. Chickens are sensitive to heat stress, and increased temperatures may have adverse effects on their production performance and animal welfare. Reliable stress measurements are crucial for heat stress adaptation. Therefore, various measurement methods and biomarkers are used to evaluate poultry stress levels. Heat shock proteins (HSPs) are heat sensitive biological markers that are highly expressed under stress, thereby acting as a cellular thermometer. HSPs also have chaperone activity, which protects cells from heat stress. This review details the role of HSP70 as a molecular chaperone and biomarker for heat stress, which is important for breeding climate-adaptable, thermo-tolerant poultry.

Chaperon Effects of Campylobacter jejuni groEL Genes Products in Escherichia coli (Campylobacter jejuni의 groEL 유전자 산물의 대장균에서의 Chaperon효과)

  • Lim, Chae-Il;Kim, Chi-Kyung;Lee, Jae-Kil
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 1994
  • The cells of Campylobacter jejuni heat-shocked at 48${\circ}C$ for 30 min synthesized the heat shock proteins of HSP90, HSP66 and HSP60. Those heat shock proteins were found to correspond to the heat shock proteins of HSP87, HSP66 (DnaK), and HSP58 (GroEL) of E. coli, respectively. By Southern blot analysis of the chromosomal DNAs of C. jejuni with groESL and dnaK genes of E. coli as DNA probes, the heat shock genes of C. jejuni which are homologous to the E. coli groESL and dnaK genes were found to exist in the chromosomal DNA. The genomic libraries of C. jejuni were constructed with the cosmid vector pWE15 and the groEL gene of C. jejuni were cloned in E. coli B178 groEL44 temperature senstive mutant. The hybrid plasmid (pLC1) was inserted with the DNA fragment (about 5.7kb in size) containing the groEL gene. E. coli groEL44 mutant cell transformed with the pLC1 could grow at 42${\circ}C$ by synthesizing the HSP60 of C. jejuni and regained the susceptibility to the ${\lambda}$ vir phage by expression of the groEL gene in the cloned cells. These indicated that the groEL products of C. jejuni had chaperon effects by synthesizing the heat shock proteins in the cloned cells of E. coli.

  • PDF

Clinicopathological Significance of p53 and HSP27 in Gastric-cancer Patients (위암 환자에서 p53과 HSP27의 임상병리학적 의의)

  • Lee, Ha-Gyoon;Kwon, Sung-Joon;Baek, Seung-Sam
    • Journal of Gastric Cancer
    • /
    • v.4 no.3
    • /
    • pp.169-175
    • /
    • 2004
  • Purpose: The tumor suppressor gene p53 has been shown to be a factor in the carcinogenesis or progression of gastric cancer. The mutant p53 has been reported to cause a higher risk of lymph-node metastasis. Futhermore, mutation of the p53 has been linked to a poor prognosis for gastric cancer. The heat shock protein-27 (HSP27), a stress protein, has also been reported to be a poor prognostic factor in ovarian and breast cancers. However, in gastric-cancer patients, controversies exist as to its influence on the prognosis. In the present study, we used an immunohistochemical stain to observe the effects of p53 and HSP27 on the clinicopathological factors and on the prognosis for gastric-cancer patients. Materials and Methods: To evaluate the significance of p53 and HSP27 in gastric cancer patients, we analyzed 212 cases of gastric cancer (stage I.IV). Tissue samples of 212 patients were stained immunohistochemically for the mutant p53 protein and for HSP27. The correlations between protein expression and the clinicopathological factors were investigated. Results: The overall expression rates for p53 and HSP27 were $36.9\%\;and\;27.8\%$, respectively. p53 and HSP27 were correlated to each other because the HSP27 expression rate was higher in the p53-positive group (P=0.046). Statistically, the p53 and the HSP27 expression rates were significantly increased in the case of tumor invasiveness, lymphatic metastasis and vessel involvement. Therefore, they play a role in cancer progression. The 5-year survival rates of the p53-positive and the p53-negative groups were $62.8\%\;and\;60.1\%$, respectively (P=0.793) while the 5-year survival rates for the HSP27-positive and HSP27-negative groups were $54.2\%\;and\;63.1\%$, respectively (P=0.090). Conclusion: p53 and HSP27 were correlated to each other in our immunohistochemical study of gastric carcinomas and they were not independent prognostic factors in gastric- cancer patients. However, further studies are needed to determine their prognostic values for gastric-cancer patients.

  • PDF

Roles of TLR-4 and NF-κB in Interleukin-6 Expression Induced by Heat Shock Protein 90 in Vascular Smooth Muscle Cells (혈관평활근세포에서 HSP90에 의한 IL-6 발현에 TLR-4와 NF-κB의 작용)

  • Rhim, Byung-Yong;Kim, Kang-Seong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1637-1643
    • /
    • 2008
  • This study has investigated whether extracellular HSP90 predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells to HSP90 not only enhanced IL-6 release but also profoundly induced IL-6 transcript via promoter activation. HSP90-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-3 and TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF). Curcumin, which inhibits dimerization of TLR-4, also attenuated the IL-6 induction by HSP90. Mutation at the NF-${\kappa}B$- or C/EBP-binding site in the IL-6 promoter region suppressed the promoter activation in response to HSP90. The gene delivery of $I{\kappa}B$ using recombinant adenoviruses and treatment with resveratrol, which inhibit NF-${\kappa}B$ activity, attenuated the HSP90-induced IL-6 release from VSMCs. The present study proposes that extracellular HSP90 would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4 and NF-${\kappa}B$ would play active roles in the process.

A Study on the Emulsifying Stability of W/O Type Sunscreen Cream by the Hansen Solubility Parameter (Hansen Solubility Parameter 를 통한 W/O 형 자외선차단 제형의 유화 안정성에 관한 연구)

  • Kim, Dong Hee;Lee, Jin Jae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • The water resistance is important factor for sunscreen formulations. Generally a sunscreen cream was formulated by a water-in-oil (W/O) emulsion. In the W/O emulsion system, silicone oils are added to improve the texture of formulations. Silicone oils have low compatibility with organic sunscreen agent, causing problems with the stability in emulsion. In this study, the compatibility between various oils in the W/O emulsion was derived numerically using Hansen solubility parameter (HSP) at first. HSP is represented a dispersion degree, a polarity, and a hydrgen bond in a composition. In this study, various emulsions were prepared according to the types of oils with different HSP values and then monitored by a viscosity and morphology according to the time and temperature. The HSP values of components and the experimental results have similar activities for the stability of emulsions. HSP made it easy to select oil with high compatibility. When the compatibility of the oil phase in the W/O emulsion was high, the viscosity change over time was small. The stability was improved under the freeze-thaw cycle (-15 ℃ ~ 45 ℃). In the future, if the composition of the ingredients is optimized through HSP, it is expected that it will be helpful in the development of W/O type sunscreen formulations that are excellent in use and stability.