DOI QR코드

DOI QR Code

Characterization of Heat Shock Protein 70 in Freshwater Snail, Semisulcospira coreana in Response to Temperature and Salinity

담수산다슬기, Semisulcospira coreana의 열충격단백질 유전자 특성 및 발현분석

  • Park, Seung Rae (Department of Marine Biotechnology, Gangneung-Wonju National University) ;
  • Choi, Young Kwang (Department of Marine Biotechnology, Gangneung-Wonju National University) ;
  • Lee, Hwa Jin (Department of Marine Biotechnology, Gangneung-Wonju National University) ;
  • Lee, Sang Yoon (The East Coast Research Institute of Life Science, Gangneung-Wonju National University) ;
  • Kim, Yi Kyung (Department of Marine Biotechnology, Gangneung-Wonju National University)
  • 박승래 (강릉원주대학교 해양생물공학과) ;
  • 최영광 (강릉원주대학교 해양생물공학과) ;
  • 이화진 (강릉원주대학교 해양생물공학과) ;
  • 이상윤 (강릉원주대학교 동해안생명과학연구원) ;
  • 김이경 (강릉원주대학교 해양생물공학과)
  • Received : 2020.04.13
  • Accepted : 2020.04.27
  • Published : 2020.06.16

Abstract

We have identified a heat shock protein 70 gene from freshwater snail, Semisulcospira coreana. The freshwater snail HSP70 gene encode a polypeptide of 639 amino acids. Based on bioinformatic sequence characterization, HSP70 gene possessed three classical signature motifs and other conserved residues essential for their functionality. The phylogenetic analysis showed that S. coreana HSP70 had closet relationship with that of golden apple snails, Pomacea canaliculata. The HSP70 mRNA level was significantly up-regulated in response to thermal and salinity challenges. These results are in agreement with the results of other species, indicating that S. coreana HSP70 used be a potential molecular marker in response to external stressors and the regulatory process related to the HSP70 transcriptional response can be highly conserved among species.

참다슬기 아가미 조직으로부터 heat shock protein 70 유전자를 분리·동정하였다. 참다슬기 HSP70 cDNA의 open reading frame (ORF)는 1,917 bp로 639개의 아미노산을 암호화하여 분자량은 약 70 kDa으로 예측되었다. 생물정보학 배열분석에 의해 HSP 유전자 기능과 관여되어 있는 3가지 주요 signature motifs와 보존된 도메인을 확인하였다. 계통학적 분석을 통하여 참다슬기 HSP70 유전자는 왕우렁이 Pomacea canaliculate와 같은 클러스트에 포함된다는 사실을 확인하였다. 수온 및 염분 변화에 따라, 참다슬기 HSP70 mRNA 유전자 레벨은 유의적으로 증가하였으며(p < 0.05), 이는 외부자극요인을 파악할 있는 분자생물학적 마커로서 활용될 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 2016년도 강릉원주대학교 학술연구조성비 지원에 의하여 수행되었음.

References

  1. Baltzegar DA, Reading BJ, Douros JD, Borski RJ. 2013. Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes. J Endocrinol 220: 61-72. doi:10.1530/JOE-13-0292.
  2. Cellura C, Toubiana M, Parrinello N, Roch P. 2006. HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Dev Comp Immunol 30: 984-997. https://doi.org/10.1016/j.dci.2005.12.009
  3. Cheng P, Liu X, Zhang G, He J. 2007. Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai). Fish Shellfish Immun 22: 77-87. https://doi.org/10.1016/j.fsi.2006.03.014
  4. Evans DH, Piermarini PM, Choe KP. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85: 97-177. https://doi.org/10.1152/physrev.00050.2003
  5. Farcy E, Serpentini A, Fievet B, Lebel J. 2007. Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Phys B 146: 540-550. https://doi.org/10.1016/j.cbpb.2006.12.006
  6. Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61: 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  7. Han G, Zhang S, Marshall DJ, Ke C, Dong Y. 2013. Metabolic energy sensors (AMPK and SIRT1), protein carbonylation, and cardiac failure as biomarkers of thermal stress in an intertidal limpet: linking energetic allocation with environmental temperature during aerial emersion. J Exp Biol doi: 10.1242/jeb.084269
  8. Hightower LE. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191-197. https://doi.org/10.1016/0092-8674(91)90611-2
  9. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L. 2009. InterPro: the integrative protein signature database. Nucleic Acids Res 37: D211-D215. https://doi.org/10.1093/nar/gkn785
  10. Kim DH, Kim HS, Lee WO, Lee BC, Kim JH, Hong KH. 2009. Inhibitory Effect of hydrogen Peroxide against Radix auricularia in aquatic environment. In: Conference of Korean Soc Fish aquatic Science, Korea, pp 82-83 (In Korean).
  11. Kim WS, Im BH, Hong C, Choi SW, Park KY, Kwak IS. 2017. Gene Expression of Chironomus riparius Heat Shock Protein 70 and Developmental Retardation Exposure to Salinity. Korean J Limnol 50: 305-313.
  12. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F. 2013. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82: 323-355. https://doi.org/10.1146/annurev-biochem-060208-092442
  13. Kohler F. 2017. Against the odds of unusual mtDNA inheritance, introgressive hybridisation and phenotypic plasticity: systematic revision of Korean freshwater gastropods (Semisulcospiridae, Cerithioidea). Invertebr Systemat 31: 249-268. https://doi.org/10.1071/IS16077
  14. Laursen JR, Liu H, Wu X, Yoshino TP. 1997. Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA. J Invertebr Pathol 70: 226-233. https://doi.org/10.1006/jipa.1997.4686
  15. Lee T, Hong HC, Kim JJ, Foighil DO. 2007. Phylogenetic and taxonomic incongruence involving nuclear and mitochondrial markers in Korean populations of the freshwater snail genus Semisulcospira (Cerithioidea: Pleuroceridae). Mol Phylogenet Evol 43: 386-397. https://doi.org/10.1016/j.ympev.2007.02.018
  16. Mcattleadanmohanrao G. 1960. Salinity tolerance and oxygen consumption of the leech Hirudinaria granulosa. In Proceedings of the Indian Academy of Sciences-Section B Springer India 51: 211-218.
  17. Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788-3796. https://doi.org/10.1101/gad.12.24.3788
  18. Moshtaghi A, Rahi ML, Nguyen VT, Mather PB, Hurwood DA. 2016. A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn (Macrobrachium australiense). Peer J 4: e2520. https://doi.org/10.7717/peerj.2520
  19. Piano A, Asirelli C, Caselli F, Fabbri E. 2002. Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress Chaperon 7: 250. https://doi.org/10.1379/1466-1268(2002)007<0250:HEITSO>2.0.CO;2
  20. Piano A, Franzellitt S, Tinti F, Fabbri E. 2005. Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 361: 119-126. https://doi.org/10.1016/j.gene.2005.06.034
  21. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  22. Song JH, Kang JH. 2016. The Current Status and Tasks of Marsh snail Restocking Project based on Economic Performance Evaluation. J Kor Soc Fish Mar Edu 28: 450-455.
  23. Song HM, Mu XD, Gu DE, Luo D, Yang YX, Xu M, Luo JR, Zhang JE, Hu YC. 2014. Molecular characteristics of the HSP70 gene and its differential expression in female and male golden apple snails (Pomacea canaliculata) under temperature stimulation. Cell Stress Chaperones 19: 579-589. https://doi.org/10.1007/s12192-013-0485-0
  24. Srivastava P. 2002. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2: 185-194. https://doi.org/10.1038/nri749
  25. Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  26. Trent JD. 1996. A review of acquired thermotolerance, heat-shock proteins and molecular chaperones in Archaea. FEMS Microbiol Rev 18: 249-258. https://doi.org/10.1111/j.1574-6976.1996.tb00241.x
  27. Tort L, Balasch JC, Mackenzie S. 2003. Fish immune system. A crossroads between innate and adaptive responses. Inmunologia 22: 277-286.
  28. Wang QI, Yu SS, Qin CX, Dong SI, Dong YW. 2014. Combined effects of acute thermal and hypo-osmotic stresses on osmolality and hsp70, hsp90 and sod expression in the sea cucumber Apostichopus japonicus Selenka. Aquaculture International 22: 1149-1161. https://doi.org/10.1007/s10499-013-9734-6
  29. Welch WJ, Feramisco JR. 1984. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259: 4501-4513. https://doi.org/10.1016/S0021-9258(17)43075-4
  30. Yang YN, Ye H, Huang H, Li S, Liu X, Zeng X, Gong J. 2013. Expression of Hsp70 in the mud crab, Scylla paramamosain in response to bacterial, osmotic, and thermal stress. Cell Stress and Chaperones 18: 475-482. https://doi.org/10.1007/s12192-013-0402-6