• Title/Summary/Keyword: HSE

Search Result 110, Processing Time 0.024 seconds

A Development of Preliminary Respirator Selection Guide(PRSG) for Workers Exposed to Chemicals (화학물질 노출 근로자를 위한 호흡보호구 선정 지침 개발)

  • Han, Don-Hee;Yoo, Kye-Mook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.393-403
    • /
    • 2014
  • Objectives: Korean Occupational Safety and Health Agency(KOSHA) intended to provide guidance to respirator program administrators on respirator selection. The purpose of this project is to suggest a preliminary respirator selection guide(PRSG) for the final guidance certified by KOSHA for the correct selection of respirators in the workplace. Materials: This PRSG was made on the based of current status of respirator usage including respirators available in Korea, foreign documents search and so on. PRSG was partially modified NIOSH pocket guide to chemical hazards, 3M Respirator Protection Resource Guide(RPRG) and OSHA Assigned Protection Factor(APF) rulemaking. Results: Respirators for chemicals having Korean Occupational Exposure Limits(KOELs) can be recommended in PRSG. For the others chemicals that have no KOELs, PRSG tells you what respirators you can select, using a simple step-by-step approach after health hazard assessment like HSE procedure. Conclusions: PRSG helps you to decide the right level of protection for a given hazardous substance and how to select the right respirators. PRSG is thus expected to reduce significant misuses of respirators for the work environment.

Comparison of Notation Items for Chemical Occupational Exposure Limits (화학물질에 대한 직업적 노출기준의 표기 항목 비교)

  • Phee, Young Gyu;Kim, Seung Won;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.226-235
    • /
    • 2020
  • Objectives: This study was to investigate the signs and notations of skin absorption, carcinogenicity, germ cell mutagenicity, and reproductive toxicity in the occupational exposure limits of Korea and of other advanced countries. Methods: Information on occupational exposure limits in Korea, the USA, the UK, Germany, and Japan was investigated through the Internet, and items marked as carcinogenicity and skin absorption were compared by country. Results: Legal occupational exposure limits have been greatly simplified. However, in the case of HSE WEL, skin absorption, carcinogenicity classification, sensitization, and in the case of DFG MAK, skin absorption, carcinogenicity, pregnancy risk group, germ cell mutagenicity, airway and skin sensitization, photo contact sensitization, and vapor pressure were provided. Conclusions: It is desirable to indicate the carcinogenicity and skin absorption within permissible limits, and to include information on critical effects in chemical substance exposure limits to uphold the right to know of industrial hygienists and workers in Korea. It is also necessary to clarify the precautions, limitations and protections for skin absorption.

Development on Tool Holder of Vibration Cutting System for Ultraprecision Machining (초정밀 가공을 위한 진동절삭 시스템의 Tool holder 개발 및 평가)

  • Lee, Se-Yun;Han, Jun-Ahn;Kim, Ji-Woon;Gwak, Yong-Kil;Kang, Dong-Bae;Ahn, Jung-Wahn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.268-273
    • /
    • 2011
  • In light guide panels, the PMMA sheet that is used in liquid crystal displays plays an important role in scattering the incident light and requires very fine machining as the sheet is directly related to the optical characteristics of the panels. High speed end milling(HSE) and high speed shaping(HSS) processes that are widely adopted and applied to the precise machining of light incident plane through vibration-assisted HSS for increasing the optical quality by minimizing the above-mentioned problems. The cutting tool and the tool post presented in this paper are designed by the authors to increase the magnitude of the cutting stroke by adopting the resonant frequency without weakening the stiffness and to reduce vibrations during even high speed feeding. The dynamic haracteristics of thecutting tool and the tool post are evaluated through simulation and experiment as well. The results reveal very appropriate dynamic characteristics for vibration-assisted HSS.

Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports (재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석)

  • Park, Jin-Suk;Ko, Sang Seom;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.

Engineering Status of Gasification Plant in 300MW IGCC and Performance Prediction of Gasification Block (300MW급 IGCC 가스화 플랜트의 엔지니어링 현황 및 가스화 블록 성능예측)

  • Kim, Youseok;Kim, Bongkeun;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.130.1-130.1
    • /
    • 2010
  • 미국과 유럽에서는 이미 10여 년 전부터 250MW급 이상의 대용량 석탄IGCC 플랜트를 상업운전 하고 있으며, 일본과 중국을 비롯한 아시아에서도 대용량 플랜트를 시운전하고 있거나 건설 중에 있다. 한국에서는 제4차 전력수급계획에 의거 태안화력 부지 내에 300MW급 IGCC 플랜트 건설을 추진 중이며, 두산중공업은 '10년 상반기에 IGCC 가스화 플랜트에 대한 FEED 설계 (Front-Eng Engineering Design)를 완료하였다. 그 과정 중 설계조건에 의한 기본 엔지니어링 사항과 석탄 가스화 플랜트에 대한 성능예측 결과를 본 연구에서 소개한다. 가스화 플랜트의 엔지니어링은 가스화 블록과 가스정제 블록으로 구분하여 수행하였다. Process Data를 이용하여 PFD Development, P&ID Generation, Equipment Specification 개발, HAZOP 수행, Architecture Engineering 등의 순으로 FEED 설계를 진행하였다. BOD (Basis of Design)를 기준으로 운전조건별 Heat & Mass Balance와 Process Flow를 재검토하고 각 기기별 운전개념을 반영하여 P&ID를 개발하였다. 그리고 배관, 전기 및 제어에 대한 각종 Diagram 개발과 HSE (Health, Safety and Environment) 관련 설계를 수행하였다. IGCC 1호기의 엔지니어링 수행과 함께 Next 호기 자체설계 역량 확보를 위해 두산중공업은 'DIGITs'로 명명된 개념기본설계 Tool을 개발하고 있다. DIGITs는 공정모델링, 단위기기 개념설계, 공정구성 (Process Configuration) 및 종합 Database Package 형태로 구성된다. DIGITs에 의한 계산 결과 공정사 Process Data 기준시 가스화 블록 출구에서 Syngas HHV와 Syngas 현열은 각각 약 $636MW_{th}$와 약 $18MW_{th}$로, Plant 설계조건 $630MW_{th}$를 만족하는 것으로 예측되었다. 향후 DIGITs는 가스정제 블록 및 주변 BOP 설비 등과 연계한 종합 개념기본설계 Tool로써 개발 진행 중이다.

  • PDF

A Study on the Expected Effects and Vulnerabilities of Safety&Health Sheet on the Construction Industry (공공기관 건설공사의 안전강화를 위한 안전보건대장이 건설산업에 미치는 기대효과와 취약점에 관한 연구)

  • Semi, Oh
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • The purpose of this study is to study how to draw up a safety guarantee certificate and its future expected effects in connection with the Industrial Safety and Health Act as it becomes mandatory to draw up a safety guarantee led by the owner who exercises practical decision-making authority and pays for the construction work. Therefore, Therefore, this study predicts the expected effects of the health and safety guarantee on the construction industry and the weaknesses that future health and assurance have in settling in the construction industry in relation to the revised Act on Industrial Safety and Health. And It will be used as basic data on the changes that will be brought by the shipper-led preemptive safety and health management system, as well as strengthening responsibilities and safety for the role of the shipper in the construction industry.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening (조선 해양 구조물용 강재의 소성 및 파단 특성 I: 변형률 경화 및 변형률 속도 경화의 이론적 배경)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.134-144
    • /
    • 2011
  • In this paper, the global study trends for material behaviors are investigated regarding the static and dynamic hardenings and final fractures of marine structural steels. In particular, after reviewing all of the papers published at the 4th and 5th ICCGS (International Conference on Collision and Grounding of Ship), the used hardening and fracture properties are summarized, explicitly presenting the material properties. Although some studies have attempted to employ new plasticity and fracture models, it is obvious that most still employed an ideal hardening rule such as perfect plastic or linear hardening and a simple shear fracture criterion with an assumed value of failure strain. HSE (2001) presented pioneering study results regarding the temperature dependency of material strain hardening at various levels of temperature, but did not show strain rate hardening at intermediate or high strain rate ranges. Nemat-Nasser and Guo (2003) carried out fully coupled tests for DH-36 steel: strain hardening, strain rate hardening, and temperature hardening and softening at multiple steps of strain rates and temperatures. The main goal of this paper is to provide the theoretical background for strain and strain rate hardening. In addition, it presents the procedure and methodology needed to derive the material constants for the static hardening constitutive equations of Ludwik, Hollomon, Swift, and Ramberg-Osgood and for the dynamic hardening constitutive equations of power from Cowper-Symonds and Johnson-Cook.

A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms (열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구)

  • Bae, So Young;Kang, Gyu-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

Surprising Incentive: An Instrument for Promoting Safety Performance of Construction Employees

  • Ghasemi, Fakhradin;Mohammadfam, Iraj;Soltanian, Ali Reza;Mahmoudi, Shahram;Zarei, Esmaeil
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.227-232
    • /
    • 2015
  • Background: In comparison with other industries, the construction industry still has a higher rate of fatal injuries, and thus, there is a need to apply new and innovative approaches for preventing accidents and promoting safe conditions at construction sites. Methods: In this study, the effectiveness of a new incentive system-the surprising incentive system-was assessed. One year after the implementation of this new incentive system, behavioral changes of employees with respect to seven types of activities were observed. Results: The results of this study showed that there is a significant relationship between the new incentive system and the safety performance of frontline employees. The new incentive system had a greater positive impact in the first 6 months since its implementation. In the long term, however, safety performance experienced a gradual reduction. Based on previous studies, all activities selected in this study are important indicators of the safety conditions at workplaces. However, there is a need for a comprehensive and simple-to-apply tool for assessing frontline employees' safety performance. Shortening the intervals between incentives is more effective in promoting safety performance. Conclusion: The results of this study proved that the surprising incentive would improve the employees' safety performance just in the short term because the surprising value of the incentives dwindle over time. For this reason and to maintain the surprising value of the incentive system, the amount and types of incentives need to be evaluated and modified annually or biannually.

A Proposal of Hazard/Risk Assessment Criteria and an Asbestos Management Method for Asbestos-containing Building Materials

  • Park, Wha-Me;Kim, Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.66-72
    • /
    • 2012
  • Objectives: The AHERA method by the US EPA, ASTM E2356-04, and HSG264 by the UK HSE, all of which are hazard/risk assessment methods for asbestos-containing building materials, were reviewed and compared based on 231 homogeneous areas. In addition, the current Act on Asbestos Safety Management (enforcement: April 29, 2012) was reviewed and analyzed. This trial provided fundamental data for improving the current asbestos hazard/risk assessment method. Methods: For the hazard/risk assessment of 77 asbestos-containing public buildings including schools, 231 homogeneous areas were selected, each of which was assessed using AHERA, ASTM E2356-04, and HSG264. Results: The matching rate of the hazard/risk assessment stood at 20.4 percent between AHERA and ASTM, at 71.4 percent between AHERA and HSG264 and at 17.8 percent between ASTM and HSG264. The AHERA method includes a seven-category rating scale. There were three categories, two of which have three subcategories. ASTM provides two decision-making charts consisting of ten rating scales for current condition estimation and for potential for disturbance estimation. In addition, the HSG264 method has a total of 20 scores with four items, and then provides four grades. This HSG264 method cannot clearly separate current condition and potential for disturbance. Conclusions: In the Korean Act on Asbestos Safety Management, the hazard/risk assessment method for asbestos-containing building materials should consider balance between current condition estimation and the potential for disturbance estimation.