• Title/Summary/Keyword: HREC

Search Result 3, Processing Time 0.016 seconds

A Study on the Priority for the Hazard and Risk Evaluation of Chemicals (HREC) According to the Industrial Safety and Health Act (ISHA) (산업안전보건법 상 관리수준 검토를 위한 화학물질 유해성.위험성 평가대상 후보물질 선정에 관한 연구)

  • Yang, Jeong Sun;Lim, Cheol Hong;Park, Sang Young
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Object: The aim of this study is to suggest a list of priority chemicals for the Hazard & Risk Evaluation of Chemicals (HREC) controlled by the Industrial Safety and Health Act (ISHA). Method: Screening assessment was done for 642 chemicals whose exposure threshold limit values were set by the Ministry of Employment and Labor (MOEL). Hazard data were collected from Korea Occupational Safety & Health Agency (KOSHA) and/or other toxicity database. Exposure data were obtained from KOSHA internal database. The hazard and exposure scores of chemicals were listed by order of priority in accordance with GHS classification and exposure index data. Result: From the result of screening risk assessment for 642 chemicals, we extracted a list of 13 priority chemicals for HREC performed by the ISHA. A priority list of 27 chemicals which have carcinogen, mutagen and/or reproductive toxicity but not controlled by the ISHA was suggested for additional evaluation as "chemicals for special management".

A Harmonized Method for Dose-response Risk Assessment Based on the Hazard & Risk Evaluation of Chemicals (HREC) According to the Industrial Safety and Health Act (ISHA) (산업안전보건법 상 유해성.위험성 평가제도 적용을 위한 양-반응 평가의 통일화 방안 연구)

  • Lim, Cheol-Hong;Yang, Jeong-Sun;Park, Sang-Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • Objectives: This study developed a harmonized method for risk assessment based on the Hazard & Risk Evaluation of Chemicals (HREC) according to the Industrial Safety and Health Act (ISHA). Methods: Three preliminary studies, performed during 2010 and 2011 by the Occupational Safety and Health Research Institute and three academic research groups, were compared. The differences in risk assessment, especially in the dose-response assessment method, were analyzed. A new harmonized method for dose-response assessment was suggested and its applicability for the HREC was examined. Results: Considering the various steps of each dose-response assessment, the equivalent steps in quantitative correction, uncertainty factor 2 (UF2) for intra-species uncertainty, and UF3 for the experimental period in the uncertainty correction were relatively high. Using our new method, the total correction values (quantitative correction plus uncertainty correction) ranged from 72~15,789 to 30~60, and the ratio of the threshold limit value (TLV) to the reference concentration decreased from 12.8~1900 to 5.4~11.8. Furthermore, when we performed risk characterization by our new method, hazard quotient (HQ) values for chloroethylene, epichlorohydrin, and barium sulfate became 3.0, 14.1, and 1.13 respectively, whereas three previous studies reported HQ values of 7.1, 4580, and 87.3 considering reasonable maximum exposure (RME) conditions. HQs of the three chemicals were calculated to be 0.6, 2.4, and 0.1 respectively, when compared to their TLVs. Conclusions: Our new method could be applicable for the HREC because the total correction values and the ratio of TLVs were within reasonable ranges. It is also recommended that additional risk management measures be applied for epichlorohydrin, for which the HQ values were greater than 1 when compared with both reference values and the TLV. Our proposed method could be used to harmonize dose-response assessment methods for the implementation of risk assessment based on the HREC according to ISHA.

High Glucose Induces Apoptosis through Caspase-3 Dependent Pathway in Human Retinal Endothelial Cell Line (인간망막 내피세포주에서 고농도 포도당이 caspase-3 경로를 통해 세포자연사 유도)

  • Seo, Eun-Sun;Chae, Soo-Chul;Kho, Eun-Gyeong;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • Diabetic Retinopathy (DR) is a leading cause of blindness among adults in the western countries. Hyperglycemia is a condition, that induces apoptotic cell death in a variety of cell types in diabetes, but the mechanism remains unclear. The aim of the study is to understand the effects of high Glucose on Human Retinal Endothelial Cells. Retinal endothelial cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM) containing 5, 25 and 50 mM Glucose, incubated for 24, 36 and 48 hours in humidified 5 % CO$_2$ incubator at 37$^{\circ}C$. Human Retinal Endothelial Cell Line (HREC) were characterized for morphology with different treatment by phase contrast microscopic analysis. Number of dead and viable cells was counted by trypan blue exclusion and supported by MTT assay. The intracellular Hydrogen peroxide (H$_2$O$_2$), a Reactive Oxygen Species (ROS) generation in high glucose conditions was assessed by FOX II assay and apoptosis by caspase-3 assay. The high glucose treated cells undergoing DNA fragmentation was witnessed by Agarose gel electrophoresis. We found that the cells incubated with 25 and 50 mM glucose containing medium for 48 hours altered the morphology of the cell, induced apoptosis and DNA fragmentation. The dead cell number were high in 25 and 50 mM when compared to the cells incubated with 5 mM glucose for 24, 36, and 48 hours. Also, the H$_2$O$_2$ levels and the activity of caspase-3 were increased in high glucose treated cells. Conclusions/interpretation: Our results demonstrated that elevated glucose induces apoptosis in cultured HREC. The hyperglycemia-induced increase in apoptosis may be dependent on caspase activation. The association between ROS generation and caspase-3 activation on high glucose treated cells is yet to be investigated.