• Title/Summary/Keyword: HRC

Search Result 105, Processing Time 0.043 seconds

Comparison of punch life of powder high speed tool steel and high speed tool steel (분말고속도공구강과 고속도공구강의 펀치 수명 비교)

  • Lee, Woo-Ram;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • A lot of research is being done on metal materials to improve the lifespan of molded parts. As a result, excellent mold materials have been developed that withstand high hardness at high temperatures and frictional heat generated from high-speed cutting. In this study, the press mold life of powder high-speed tool steel and general high-speed tool steel was compared. Powdered high-speed steel is composed of alloying elements such as tungsten, maldividene, cobalt, chromium, and vanadium in steel, which improves wear resistance compared to high-hardness and high-speed tool steels. The mold parts of both steel types were manufactured in the same way from heat treatment to machining, and the powder high-speed tool steel was 66HRC and the high-speed tool steel was 61HRC. As a result of the experiment, it was observed that the number of punching of powder high-speed tool steel was improved by 40-50%, and powder high-speed tool steel had fewer impurities, uniform texture, and excellent surface structure. It has a microscopic structure.

Investigation of Regraphitization during Cam Shaft Remelting (캠 샤프트 재용융 처리시 재흑연화 현상에 관한 연구)

  • Oh, Young-Kun;Kim, Gwang-Soo;Koh, Jin-Hyun
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.648-652
    • /
    • 1998
  • TIG remelting was performed to harden the surface of automobile earn shaft. Multipass remelting was conducted in longitudinal direction under argon gas atmosphere. The microstructure of as-east earn shaft was gray iron which consisted of flake graphite and pearlitic matrix. The remelted area had microstructue of both fine pearlite and ledeburite structure that consisted of globular austenite and $Fe_3C$. Hardness for as-cast earn shaft had HRc 25~28, however it increased at remelted area to HRc 53~55. Black line was found at heat affected zone next to the fusion line, that is remelt area of previous pass, during multipass remelting. Black line was identified as graphite, which was transformed from $Fe_3C$. in the ledeburite structure. It is observed that all graphites were nucleated at $Fe_3C$. and matrix interface. High density energy laser remelting process was also applied to verify whether black line could be eliminated. However, black line was still existed as observed in TIG remelting process. Regraphitization was simulated on the ledeburitic structure specimen using Gleeble 1500 with conditions of 1100 and 100$0^{\circ}C$ for 0.5, I, 3, 5 and 1Osee. From the fact that graphite was formed even at the simulation condition of 100$0^{\circ}C$ for 0.5sec, it is seen that regraphitization is an inevitable phenomenon generated whatever processes used during multipass overlap remelting.

  • PDF

Empathy Recognition Method Using Synchronization of Heart Response (심장 반응 동기화를 이용한 공감 인식 방법)

  • Lee, Dong Won;Park, Sangin;Mun, Sungchul;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.45-54
    • /
    • 2019
  • Empathy has been observed to be pivotal in enhancing both social relations and the efficiency of task performance. Empathetic interaction has been shown to begin with individuals mirroring each other's facial expressions, vocal tone, actions, and so on. The internal responses of the cardiovascular activity of people engaged in empathetic interaction are also known to be synchronized. This study attempted to objectively and quantitatively define the rules of empathy with regard to the synchronization of cardiac rhythm between persons. Seventy-four subjects participated in the investigation and were paired to imitate the facial expressions of their partner. An electrocardiogram (ECG) measurement was taken as the participants conducted the task. Quantitative indicators were extracted from the heart rhythm pattern (HRP) and the heart rhythm coherence (HRC) to determine the difference of synchronization of heart rhythms between two individuals as they pertained to empathy. Statistical significance was confirmed by an independent sample t-test. The HRP and HRC correlation(r) between persons increased significantly with empathy in comparison to an interaction that was not empathetic. A difference of the standard deviation of NN intervals (SDNN) and the dominant peak frequency decreased. Therefore, significant parameters to evaluate empathy have been proposed through a step-wise discrimination analysis. Empathic interactions may thus be managed and monitored for high quality social interaction and communication.

ISDN 신뢰도 및 가용도 목표치 분석

  • Lee, Jong-Suk;Jeong, Cheol-O;Go, Jae-Sang
    • Electronics and Telecommunications Trends
    • /
    • v.7 no.4
    • /
    • pp.107-114
    • /
    • 1992
  • 본 고에서는 Bellcore 에서 제시한 ISDN 의 신뢰도 및 가용도를 BRA(Basic Rate Access) 와 PRA(Primary Rate Access) 각각에 대해서 살펴보았다 또한 표준의사접속 (HRC : Hypothetical Reference Connection) 을 근간으로 해서 ISDN 의 신뢰도 목표치와 가용도 목표치를 제시하였다 Bellcore에서 제시한 ISDN 스위칭 시스팀의 신뢰도 성능 목표치는 22개의 신뢰도 파라미터와 목표치로 정의 되었으며, 22개의 신뢰도 파라미터 는 Downtimes, cutoff call probability, Ineffective machine attempt(IMA) probability 와 Failure intensity 등 4개의 종류로 나누어서 제시하였다.

High Speed Ball End Milling of Hardened Mold Steel (열처리 금형강의 볼엔드밀 고속가공)

  • 양진석;허영무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1418-1423
    • /
    • 2004
  • High speed machining experiment on the heat-treated mold steel(STAVAX and CALMAX of hardness HRc 53) is carried using TiAlN coated ball endmill. Tool life and wear characteristics under the various machining parameters and cooling methods are investigated. Effect of cooling method on life and wear of the tool was compared. For most cases, tool life was not determined by the amount of wear but by th chipping on the cutting edge. It is found that tool manufacturer's cutting parameters generally agrees with the results of this experiment.

  • PDF

The Effect of Pretreatment(Q/T) on the Plasma Nitriding of SCM435 Structural Steel (SCM435 구조용 합금강의 플라즈마 질화에 미치는 전처리(Q/T)의 영향)

  • Lim, Young-Phil;Park, Dae-Chul;Lee, Jae-Sig;You, Yong-Zoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.99-110
    • /
    • 1998
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of SCM435 structural steel nitrided by micro-pulse plasma was investigated. The quenching and tempering temperatures for obtaining matrix hardness of SCM435 steel on range of HRC30 to HRC40 desired for machine parts were about $860^{\circ}C$ and $500^{\circ}C$ respectively. The case depth of SCM435 nitrided at $480^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and was approximately $150{\mu}m$. However, hardness and compactness of nitrified layer on Q/T treated specimen were more heigher than annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrified layer decreased with the temperature. Phase mixture of ${\gamma}^{\prime}$-phase($Fe_4N$) and ${\varepsilon}$-phase($Fe_3N$) were detected by XRD analysis in the nitrified layer formed at optimum nitriding condition, and only single ${\gamma}^{\prime}$-phase was detected in the nitrified layer formed at higher nitriding temperature such as $540^{\circ}C$. The optimum nitriding temperature was approximately $480^{\circ}C$ which is lower than tempering temperature for preventing softening behavior of SCM435 matrix during nitriding process and the surface hardness of nitrified layer obtained by optimum preheat treatment condition was about Hv930.

  • PDF

Effect of Copper Addition on Mechanical and Thermal Properties of SKD11 Stainless Steel (Cu 첨가에 따른 SKD11의 기계적, 열적 특성 변화)

  • Choi, Gwang Mook;Chae, Hong-Jun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.6
    • /
    • pp.103-109
    • /
    • 2019
  • Cu-added SKD11 was manufactured through the casting process and the effects of Cu addition with different contents (0, 1, 2 and 3 wt%) and aging treatment on microstructure, mechanical characteristics such as tensile strength and hardness, and thermal conductivity were investigated. The microstructure was analyzed by FE-SEM and XRD, the mechanical characteristics by Rockwell hardness tester and Tensile tester, and the thermal conductivity by Laser flash. As a result, SKD11 containing Cu had higher hardness than as-received SKD11. The hardness of as-cast SKD11 containing 1 wt% Cu was 42.4 HRC, whereas the hardness of asreceived SKD11 cast alloy was 19.5 HRC, indicating that the hardness was greatly improved when Cu was added. In the case of tensile strength, Cu-added SKD11 cast alloy had lower tensile strength than as-received SKD11, and the tensile strength tended to increase as Cu content increased. After heat treatment, however, tensile strength of as-received SKD11 was significantly increased, whereas in the case of Cu-added SKD11, as the Cu contents increased, the tensile strength increased less and even reduced at 3 wt% Cu. The thermal conductivity of Cu-added SKD11 cast alloy was about 13 W m-1 K-1, which was lower than that of the asreceived SKD11 cast alloy (28 W m-1 K-1). After the heat treatment, however, the thermal conductivity of as-received SKD11 was reduced, while the thermal conductivity of the SKD11 added with Cu was increased. Thermal conductivity was generally larger with less Cu content, and this tendency became more pronounced after heat treatment.

A Rapid Detection of Methicillin-Resistant Staphylococci by Polymerase Chain Reaction (Polymerase Chain Reaction을 이용한 Methicillin-resistant Staphylococci의 신속 검출)

  • 박진숙;박영진
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2002
  • PCR of the mecA gene for the rapid detection of methicillin-resistant staphylococci was perfomed and compared with the antibiotic sensitivity test. A total of 43 strains of staphylococi from clinical specimens were used in this study. An antibiotic sensitivity test by the agar dilution method of NCCLS (The National Commitee for Clinical Laboratory Standard) was performed for the strains. Among them, 39 isolates were methicillin-resistant (MRS), and 4 isolates were methicillin-susceptible (MSS). With the exception for one strain (Staphylococcus cohnii, HRC2-4), all MRS strains amplified the expected 533 bp fragments of the mecA gene by PCR, However, one strain (Staphylococcus aureus, HSA1-10) that was classified as a sensitive strain by the antibiotic sensitivity test was mecA positive by PCR. All 35 methicillin-resistant Staphylococcus aureus (MRSA) strains were mecA positive, but overall, concordance between the results of the mecA PCR and antibiotic sensitivity test was 95.6%.

Fabrication of Sintered Compact of Fe-TiB2 Composites by Pressureless Sintering of (FeB+TiH2) Powder Mixture

  • Huynh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.282-286
    • /
    • 2016
  • A sintered body of $TiB_2$-reinforced iron matrix composite ($Fe-TiB_2$) is fabricated by pressureless-sintering of a mixture of titanium hydride ($TiH_2$) and iron boride (FeB) powders. The powder mixture is prepared in a planetary ball-mill at 700 rpm for 3 h and then pressurelessly sintered at 1300, 1350 and $1400^{\circ}C$ for 0-2 h. The optimal sintering temperature for high densities (above 95% relative density) is between 1350 and $1400^{\circ}C$, where the holding time can be varied from 0.25 to 2 h. A maximum relative density of 96.0% is obtained from the ($FeB+TiH_2$) powder compacts sintered at $1400^{\circ}C$ for 2 h. Sintered compacts have two main phases of Fe and $TiB_2$ along with traces of TiB, which seems to be formed through the reaction of TiB2 formed at lower temperatures during the heating stage with the excess Ti that is intentionally added to complete the reaction for $TiB_2$ formation. Nearly fully densified sintered compacts show a homogeneous microstructure composed of fine $TiB_2$ particulates with submicron sizes and an Fe-matrix. A maximum hardness of 71.2 HRC is obtained from the specimen sintered at $1400^{\circ}C$ for 0.5 h, which is nearly equivalent to the HRC of conventional WC-Co hardmetals containing 20 wt% Co.