• Title/Summary/Keyword: HPLC analysis methods

Search Result 478, Processing Time 0.047 seconds

Analysis of Marker Substances in Samul-tang by HPLC-MS/MS (HPLC-MS/MS에 의한 사물탕의 지표성분 분석)

  • Yu, Young-Beob;Kim, Mi-Jung;Huang, Dae-Sun;Ha, Hye-Kyeong;Ma, Jin-Yeul;Shin, Hyeun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • Objectives : This study presents a high performance liquid chromatography - electrospray ionization-mass spectrometer (HPLC-MS/MS) methods for the quantitative and qualitative analysis of various active components in Samul-tang, which is composed of four crude herbs. Methods : HPLC-ESI-MS/MS for the determinations of paeoniflorin and 5-HMF (5-hydroxymethyl 2-furaldehyde) in the Samul-tang, the separation method was performed on an COSMOS1L 5C18-AR-Il (2.0 X 150 mm I.D.) column by gradient elution with 0.1% acetic acid and 5% CH3CN in water (A)-0.1% acetic acid and 5% H20 in CH3CN (B) as the mobile phase at a flow-rate of 300 ${\mu}L/min$ with detection at quadrupole mass spectrometer. The all marker substances were always detected as the base peaks in the positive ion mode. Results : The paeoniflorin of Paeoniae Radix in Samul-tang showed a strong base peak [M+H2O]+ in the positive detection mode to give the following as; paeoniflorin (498.109 [M+H2O]+, 479.8 [M]+, 301 [M-glucose]+, 179.3 [glucose]+). Based on the HPLC retnetion time and MS of standard compounds confirmed the identity of active compounds in Rehmanniae Radix Preparata as follows; 5-HMF (127.0[M+H]+, 109.3 [M-OH]+) in the positive ion mode. Conclusion : According to the above results, HPLC-ESI-MS method permits assignment of tentative structures such as paeoniflorin and 5-HMF in the Samul-tang.

  • PDF

Quantification of Arsenic Species in Some Seafood by HPLC-AFS (HPLC-AFS를 이용한 해산물 중 비소 화학종 분리정량)

  • Jeong, Seung-Woo;Lee, Chae-Hyeok;Lee, Jong-Wha;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • Background: Considering the expenses of and difficulties in arsenic speciation by high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), alternative measurement methods should be useful, especially for large-scale research and projects. Objectives: A measurement method was developed for arsenic speciation using HPLC-atomic fluorescence spectrometry (HPLC-AFS) as an alternative to HPLC-ICP-MS. Methods: Total arsenic and toxic arsenic species in some seafoods were determined by atomic absorption spectrometry coupled with hydride vapor generation (AAS-HVG) and HPLC-AFS, respectively. Recovery rate of arsenic species in seafood was evaluated by ultra sonication, microwave and enzyme (pepsin) for the optimal extraction method. Results: Limits of detection of HPLC-AFS for As3+, dimethylarsinate (DMA), monomethylarsonate (MMA) and As5+ were 0.39, 0.53, 0.60 and 0.64 ㎍/L, respectively. The average accuracy ranged from 97.5 to 108.7%, and the coefficient of variation was in the range of 1.2~16.7%. As3+, DMA, MMA and As5+ were detected in kelp, the sum of toxic arsenic in kelp was 40.4 mg/kg. As3+, DMA, MMA and As5+ were not detected in shrimp and squid, but total arsenic (iAS and oAS) content in shrimp and squid analyzed by AAS-HVG were 18.1 and 24.7 mg/kg, respectively. Conclusions: HPLC-AFS was recommendable for the quantitative analysis method of arsenic species. As toxic arsenic species are detected in seaweeds, further researches are needed for the contribution degree of seafood in arsenic exposure.

Enhancement of Analytical Method for Phenolic Compounds in Mainstream Cigarette Smoke Using High Efficiency Column and RRLC system (고효율 컬럼과 RRLC를 이용한 담배 주류연 중 페놀 화합물의 분석 효율화)

  • Min, Hye-Jeong;Kang, Young-Hee;Lee, Jeong-Min;Jang, Gi-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • This study was carried out to enhance the analytical methods of phenolic compounds in mainstream cigarette smoke using high efficiency column and RRLC(Rapid Resolution Liquid Chromatography) system, and to compare these methods. RRLC system offers significantly faster results with higher data quality of phenolic compounds than conventional HPLC, but it is disadvantage that it is expensive. On the other hand, the method using monolithic column offers faster results by the use of conventional HPLC system without new equipment introduction. In this study, we used the linear type smoking machine and Health Canada method for pre-treatment process of phenolic compounds. The analysis time of phenolic compounds using RRLC and monolithic column was individually 8 and 15 minutes, whereas in the conventional HPLC it was 45 minutes. These new methods were accompanied with the minimal solvent consumption and had lower analysis costs. Also, we proved that there were no difference between new methods and conventional method in accuracy by statistic.

Effect of HPLC Analytical Procedure upon Determining Drug Content in PLGA Microspheres

  • Heo, Sun-Ju;Lee, Hong-Hwa;Lee, Min-Jung;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • The objective of this study was to investigate the effects of sample preparation, HPLC conditions and peak measurement methods upon determining progesterone content of poly-d,l-lactide-co-glycolide microspheres. A series of the microspheres with different formulations was first prepared. To determine their actual drug contents, the microspheres were dissolved in tetrahydrofuran and diluted with various amounts of methanol to precipitate the polymer. After removal of polymeric precipitates, the filtrates were subject to HPLC analysis under versatile experimental conditions. Interestingly, the composition of a sample solution (e.g., the ratio of methanol to tetrahydrofuran) affected the magnitudes of both peak fronting and peak broadening of progesterone. Its peak became broader and more asymmetrical at lower methanol:tetrahydrofuran ratios. Furthermore, its peak height was influenced by the proportion of tetrahydrofuran in a sample solution. Such problems encountered with tetrahydrofuran were exacerbated when a larger volume of the sample solution was injected onto an analytical column. Under our experimental conditions a peak area measurement provided more accurate and reliable determination of progesterone content in various microspheres than a peak height determination. Optimizing the composition of a sample solution, HPLC chromatographic conditions and peak analysis methods was a prerequisite to an accurate determination of progesterone encapsulated within microspheres.

Applicability of the HPLC Method for the Estimation of Octanol/water Partition Coefficient to Pesticides of Domestic Use (국내 사용 농약을 대상으로 한 HPLC 방법에 의한 옥탄올/물 분배계수 추정법의 적용성 검토)

  • Kim, Kyun;Kwon, Jin-Wook;Kim, Yong-Hwa
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2001
  • Octanol/water partition coefficients of 52 chemicals were calculated using RP-HPLC estimation method and predicted by computer program, PCHEM. The result showed relationship between literature values and RP-HPLC observed values (relative coefficient r$^2$=0.916), but the relationship of PCHEM values with literature values was lower than RP-HPLC value (relative coefficient r$^2$=0.795). The average difference in partition coefficient between the RP-HPLC method and flask-shaking method was log Kow=0.54, while the average difference between the values predicted form the computer program and flask- shaking method was log Kow = 0.36 Compared to octanol/water partition coefficients by 3 methods (Flask-shaking, RP-HPLC, computer prediction), the octanol/water partition coefficient values based on the flask-shaking method were very similar to the literature values, while the octanol/water partition coefficient values by RP-HPLC method without to consider the dead time, and computer prediction values did not significantly differ with the literature values.

  • PDF

Antioxidant Activity of Vitex rotundifolia Seeds and Phytochemical Analysis Using HPLC-PDA

  • Hyejin Cho;Hak-Dong Lee;Jae Min Chung;Sanghyun Lee
    • Natural Product Sciences
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This study assessed in vitro antioxidant activity (ABTS+ and DPPH) of Vitex rotundifolia seeds collected from two different regions in Korea (Jungjang City and Sindu City). Three extraction methods using ethanol, methanol, and water were prepared separately and subjected to quantification by reverse-phase high-performance liquid chromatography-photodiode array (HPLC-PDA) analysis as well as antioxidant testing. Among them, the water-based extract exhibited superior activity in the ABTS+ compared with the ethanol- and methanol-based extracts, while the DPPH assay analysis, revealed that the methanol-based extract had very low antioxidant activity. The concentrations of vanillic acid (1), luteolin (2), vitexicarpin (3), and artemetin (4) were quantified using HPLC-PDA analysis. Vanillic acid (1) was identified as the main antioxidant in V. rotundifolia seeds. Combining the antioxidant activity and quantitative analysis results, the water-based extract was considered to have the highest antioxidant activity. Furthermore, vanillic acid (1) was detected in the leaves and stems of V. rotundifolia plants from different regions, indicating that this species has the potential for use in future antioxidant-applications.

Quantitative Analysis of Quality Control of Natural Medicine by $^1H-NMR$ Spectrometry-Quantitative Analysis of Hesperidin from Citrus unshiu ($^1H-NMR$을 이용한 한약재의 품질 평가 방법 확립;진피의 Hesperidin 정량분석)

  • Ahn, Eun-Mi;Baek, Mi-Young
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Objectives : In this paper, we describe that $^1H-NMR$ spectroscopy may be superior to the conventional HPLC for the quantitative analysis of hesperidin from Citrus unshiu. Methods : $^1H-NMR$ spectra (400 MHz) were recorded in $DMSO-d_6$ using a Varian UNITY Inova AS 400 FT NMR spectrometer. One hundred milligram of powdered Citrus unshiu was weighed out and mixed with 1 ml of $DMSO-d_6$ with sonication for 30 min (room temperature). The extracts were filtrated through a 0.45 ${\mu}m$ PVDF filter and 0.5 ml of filtrated extract used for quantitative $^1H-NMR$ measurement (added 1 mg of dimethyl terephthalate as internal standard). The quantity of hesperidin was calculated by the ratio of the intensity of the compound to the known amount of internal standard. For HPLC analysis, the half gram of plant material was extracted with 60 ml of MeOH for 2 hours. The extracts were made 100 ml volume and analyzed by a Waters HPLC system using a YMC ODS column. The total flow rate was 1.0 ml/min with a sample volume 10 ${\mu}l$ and UV detection at 280nm. Results : The contents of hesperidin in Citrus unshiu was determined $5.33{\pm}0.06$% in the quantitative $^1H-NMR$ method and $5.15{\pm}0.12%$ in HPLC method. Using the quantitative $^1H-NMR$ the contents of hesperidin can be determined in much shorter time than the conventional HPLC measurements. Conclusions : From those results, the advantages of quantitative $^1H-NMR$ analysis are that can be analyzed to identify and quantify, and no reference compounds required for calibration curve. Besides, it allows rapid and simple quantification for hesperidin with an analysis time for only 10 min without any pre-purification steps.

  • PDF

Comparison of Methods for Measuring Histamine by ELISA and HPLC-MS Assay In Vitro (In Vitro에서 히스타민 측정 시 ELISA법과 HPLC-MS 분석법의 비교)

  • Lee, In Hee;Kim, Yoo Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.306-312
    • /
    • 2015
  • The measurement of histamine is to determine the degree of allergy because the allergic reaction can lead to the release of histamine. In general, the antigen-antibody reaction was quantified by measuring absorbance using a microplate reader. In this study, we compare the method using a general antigen-antibody reaction and the method using a high performance liquid chromatography mass spectrometer (HPLC-MS) of chemical analysis in the measurement of histamine secretion. The cell line used was RBL-2H3, an allergic reaction was induced by stimulation with C48/80 (compound 48/80). Allergy-induced cells degranulation rate was confirmed by measurement of ${\beta}$-hexosaminidase and cytotoxicity was performed for the validity of the experiment. The quantitative determination of histamine showed a significant difference, since the quantitative limit of the measurement by the antigen-antibody reaction was 10.257 ppm while the quantitative limit of the measurement by HPLC-MS was 0.020 ppm. Measurement of histamine in allergic activity and anti-allergy tests showed that the HPLC-MS analysis rather than the analysis of the antigen-antibody reaction is a more precise and accurate test.

Comparative Study of Changpo(Ch$\={a}$ngp$\'{u}$) species on Antioxidant Activity and HPLC Pattern Analysis (4종 창포류의 성분 패턴 및 항산화 효능 비교)

  • Choi, Go-Ya;Ko, Byoung-Seob;Lee, Mi-Young;Chae, Sung-Wook;Kim, Young-Hwa;Ryuk, Jin-Ah;Baek, Ji-Seong;Lee, Hye-Won
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Objective : This study was to compare antioxidant activity and HPLC pattern analysis from 4 species of changpo(ch$\={a}$ngp$\'{u}$). Methods : To compare the antioxidant activity and HPLC pattern analysis from the 4 species of changpo, we performed the in vitro anti-oxidative activity assays and HPLC analysis from 70% ethanol extracts of Acorus gramineus Sol. (=AG), A. tatarinowii Schott (=AT), A. calamus L. (=AC) and Anemone altaica Fisch. ex C.A.Mey (=AA) taken in the herbal medicine market of Korea. Results : AG has the most effective anti-oxidative activity among 4 species of changpo. As the HPLC pattern analysis, AT was detected the unknown peak at retention time 14.9 min whereas AG was not showed any peak at the same retention time. These results suggest that AG could be used rather than AT when it need to be prescribed as anti-oxidative medicine. Conclusions : This result can be used as the basic data contributing to the stability of AG according to an appropriate clinical application.

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.