• Title/Summary/Keyword: HPAI

Search Result 238, Processing Time 0.073 seconds

Novel Phage Display-Derived H5N1-Specific scFvs with Potential Use in Rapid Avian Flu Diagnosis

  • Wu, Jie;Zeng, Xian-Qiao;Zhang, Hong-Bin;Ni, Han-Zhong;Pei, Lei;Zou, Li-Rong;Liang, Li-Jun;Zhang, Xin;Lin, Jin-Yan;Ke, Chang-Wen
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.704-713
    • /
    • 2014
  • The highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype infect poultry and have also been spreading to humans. Although new antiviral drugs and vaccinations can be effective, rapid detection would be more efficient to control the outbreak of infections. In this study, a phage-display library was applied to select antibody fragments for HPAI strain A/Hubei/1/2010. As a result, three clones were selected and sequenced. A hemagglutinin inhibition assay of the three scFvs revealed that none exhibited hemagglutination inhibition activity towards the H5N1 virus, yet they showed a higher binding affinity for several HPAI H5N1 strains compared with other influenza viruses. An ELISA confirmed that the HA protein was the target of the scFvs, and the results of a protein structure simulation showed that all the selected scFvs bound to the HA2 subunit of the HA protein. In conclusion, the three selected scFVs could be useful for developing a specific detection tool for the surveillance of HPAI epidemic strains.

MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus

  • Sooyeon Lee;Suyeon Kang;Jubi Heo;Yeojin Hong;Thi Hao Vu;Anh Duc Truong;Hyun S Lillehoj;Yeong Ho Hong
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.838-855
    • /
    • 2023
  • The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.

PAIVS: prediction of avian influenza virus subtype

  • Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.5.1-5.5
    • /
    • 2020
  • Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.

The Analysis of HPAI Using CDR Data (CDR 자료를 이용한 고병원성 조류인플루엔자 분석)

  • Choi, Dae-Woo;Joo, Jae-Yun;Song, Yu-Han;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.13-22
    • /
    • 2019
  • This study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and is based on artificial intelligence-based HPAI spread analysis and patterning. The inflow of highly pathogenic avian influenza is coming through migratory birds from abroad, but it is not known exactly what pathways provide the farm with the cause of the infection. And the transition between farms from the generated farms only assumes that the vehicle is the main cause, and the main cause of the spread is not exactly known. Based on the call detailed records (CDR) data provided by KT, the study aims to see how people visiting migratory bird-watching sites, presumed to be the site of the outbreak, will flow through infected farms.

  • PDF