• Title/Summary/Keyword: HNS(hexanitrostilbene)

Search Result 4, Processing Time 0.015 seconds

A Crystal Type Conversion Study of HNS(Hexanitrostilbene) (HNS(Hexanitrostilbene)의 결정 전환 연구)

  • 강정부;구본탁;이경희;임영권
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.216-224
    • /
    • 2001
  • HNS(hexanitrostilbene), one of the most important heat resistant explosive was recrystallized using organic solvent, nitric acid and dual solvent system of acetonitrile-toluene. The purification, analysis, type conversion method and its physical properties are described.

  • PDF

Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

  • Park, Sehwan;Lee, Jihyeon;Cho, Soo Gyeong;Goh, Eun Mee;Lee, Sungman;Koh, Sung-Suk;Kim, Jeongkwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3659-3664
    • /
    • 2013
  • Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either $[M-H]^-$ for TNT and DNT or $[M]^{{\cdot}-}$ for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i.e., $[M+HCOO]^-$. These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available.

Deformation of STS Cup for EFI Detonator in High Velocity Impact (탄두 충돌 시 기폭관 컵의 변형 해석)

  • Kim, Seok-Bong;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.430-434
    • /
    • 2013
  • In this paper, we have investigated deformation of cup for EFI detonator in high velocity impact test. The experimental result shows that STS cup deformed 0.170 mm with the bulged shape. The numerical simulation result with static/dynamic material properties of SUS304 shows 0.166 mm of deformation. The main parameters to decrease the deformation of cup are stength, thickness and density of cup. The initial condition of SUS304 cup was strength of 215 MPa and thickness of 0.12 mm. As strength increases to 500 MPa, deformation of cup converges to 0 mm, and as thickness increases to 0.18 mm, deformation of cup converges to 0 mm. If the density of cup decreases from 8 to 2.7 g/cc, the deformation of cup decreases to 0.141 mm.

An Experimental Study on Performance of a Miniaturized Exploding Foil Initiator using VISAR (VISAR를 활용한 초소형 EFI 기폭 장치의 성능 특성 연구)

  • Yu, Hyeonju;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.80-87
    • /
    • 2017
  • The performance of a pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor explosives. In this research, a micro Kapton flyer was accelerated by an exploding foil initiator (EFI) to figure out shock sensitivity of hexanitrostilbene (HNS) to impact. The averaged shock pressure and duration imparted to the explosive by flyer impact are measured by using a velocity interferometer for any reflector (VISAR) and impedance matching technique. Consequently, this research shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by determining the relations between the impact velocity, the amplitude and width of impact loading.