• Title/Summary/Keyword: HMM(Hidden Markov Model) Model

Search Result 453, Processing Time 0.023 seconds

Named Entity Boundary Recognition Using Hidden Markov Model and Hierarchical Information (은닉 마르코프 모델과 계층 정보를 이용한 개체명 경계 인식)

  • Lim, Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.182-187
    • /
    • 2006
  • This paper proposes a method for boundary recognition of named entity using hidden markov model and ontology information of biological named entity. We uses smoothing method using 31 feature information of word and hierarchical information to alleviate sparse data problem in HMM. The GENIA corpus version 2.1 was used to train and to experiment the proposed boundary recognition system. The experimental results show that the proposed system outperform the previous system which did not use ontology information of hierarchical information and smoothing technique. Also the system shows improvement of execution time of boundary recognition.

  • PDF

Phoneme-based Recognition of Korean Speech Using HMM(Hidden Markov Model) and Genetic Algorithm (HMM과 GA를 이용한 한국어 음성의 음소단위 인식)

  • 박준하;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.291-295
    • /
    • 1997
  • 현재에 주로 개발되어 상용화가 시작되고 있는 음성인식 시스템의 대부분은 단어인식을 기분으로 하는 시스템으로 적용 단어수를 늘려줌으로서 인식범위를 늘일 수 있으나, 그에 따라 검색해야하는 단어수가 늘어남으로서 전체적인 시스템의 속도 및 성능이 저하되는 경향이 있다. 이러한 단점의 극복을 위하여 본 논문에서는 HMM(Hidden Markov Model)과 GA(Genetic Algorithm)를 이용한 한국어 음성의 음소단위 인식 시스템을 구현하였다. 음성 특징으로는 LPC Cepstrum 계수를 사용하였으며, 인식시는 인식대상이 되는 단어에 대하여 GA(Genetic Algorithm)을 통하여 각 음소를 분리하고, 음소단위로 학습된 HMM 파라미터를 적용하여 인식함으로써 각각의 음소별 가능하도록 하는 방법을 제안하였다.

  • PDF

Performance Comparison of GMM and HMM Approaches for Bandwidth Extension of Speech Signals (음성신호의 대역폭 확장을 위한 GMM 방법 및 HMM 방법의 성능평가)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.119-128
    • /
    • 2008
  • This paper analyzes the relationship between two representative statistical methods for bandwidth extension (BWE): Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) ones, and compares their performances. The HMM method is a memory-based system which was developed to take advantage of the inter-frame dependency of speech signals. Therefore, it could be expected to estimate better the transitional information of the original spectra from frame to frame. To verify it, a dynamic measure that is an approximation of the 1st-order derivative of spectral function over time was introduced in addition to a static measure. The comparison result shows that the two methods are similar in the static measure, while, in the dynamic measure, the HMM method outperforms explicitly the GMM one. Moreover, this difference increases in proportion to the number of states of HMM model. This indicates that the HMM method would be more appropriate at least for the 'blind BWE' problem. On the other hand, nevertheless, the GMM method could be treated as a preferable alternative of the HMM one in some applications where the static performance and algorithm complexity are critical.

Isolated Word Recognition Using Allophone Unit Hidden Markov Model (변이음 HMM을 이용한 고립단어 인식)

  • Lee, Gang-Sung;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 1991
  • In this paper, we discuss the method of recognizing allophone unit isolated words using hidden Markov model(HMM). Frist we constructed allophone lexicon by extracting allophones from training data and by training allophone HMMs. And then to recognize isolated words using allophone HMMs, it is necessary to construct word dictionary which contains information of allophone sequence and inter-allophone transition probability. Allophone sequences are represented by allophone HMMs. To see the effects of inter-allophone transition probability and to determine optimal probabilities, we performend some experiments. And we showed that small number of traing data and simple train procedure is needed to train word HMMs of allophone sequences and that not less performance than word unit HMM is obtained.

  • PDF

A hidden Markov model for predicting global stock market index (은닉 마르코프 모델을 이용한 국가별 주가지수 예측)

  • Kang, Hajin;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.461-475
    • /
    • 2021
  • Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.

Improved Bimodal Speech Recognition Study Based on Product Hidden Markov Model

  • Xi, Su Mei;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.164-170
    • /
    • 2013
  • Recent years have been higher demands for automatic speech recognition (ASR) systems that are able to operate robustly in an acoustically noisy environment. This paper proposes an improved product hidden markov model (HMM) used for bimodal speech recognition. A two-dimensional training model is built based on dependently trained audio-HMM and visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A weight coefficient is introduced to adjust the weight of the video and audio streams automatically according to differences in the noise environment. Experimental results show that compared with other bimodal speech recognition approaches, this approach obtains better speech recognition performance.

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

Enhanced Independent Component Analysis of Temporal Human Expressions Using Hidden Markov model

  • Lee, J.J.;Uddin, Zia;Kim, T.S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.487-492
    • /
    • 2008
  • Facial expression recognition is an intensive research area for designing Human Computer Interfaces. In this work, we present a new facial expression recognition system utilizing Enhanced Independent Component Analysis (EICA) for feature extraction and discrete Hidden Markov Model (HMM) for recognition. Our proposed approach for the first time deals with sequential images of emotion-specific facial data analyzed with EICA and recognized with HMM. Performance of our proposed system has been compared to the conventional approaches where Principal and Independent Component Analysis are utilized for feature extraction. Our preliminary results show that our proposed algorithm produces improved recognition rates in comparison to previous works.

  • PDF

The Use of MSVM and HMM for Sentence Alignment

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.301-314
    • /
    • 2012
  • In this paper, two new approaches to align English-Arabic sentences in bilingual parallel corpora based on the Multi-Class Support Vector Machine (MSVM) and the Hidden Markov Model (HMM) classifiers are presented. A feature vector is extracted from the text pair that is under consideration. This vector contains text features such as length, punctuation score, and cognate score values. A set of manually prepared training data was assigned to train the Multi-Class Support Vector Machine and Hidden Markov Model. Another set of data was used for testing. The results of the MSVM and HMM outperform the results of the length based approach. Moreover these new approaches are valid for any language pairs and are quite flexible since the feature vector may contain less, more, or different features, such as a lexical matching feature and Hanzi characters in Japanese-Chinese texts, than the ones used in the current research.

Vehicle trajectory prediction based on Hidden Markov Model

  • Ye, Ning;Zhang, Yingya;Wang, Ruchuan;Malekian, Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3150-3170
    • /
    • 2016
  • In Intelligent Transportation Systems (ITS), logistics distribution and mobile e-commerce, the real-time, accurate and reliable vehicle trajectory prediction has significant application value. Vehicle trajectory prediction can not only provide accurate location-based services, but also can monitor and predict traffic situation in advance, and then further recommend the optimal route for users. In this paper, firstly, we mine the double layers of hidden states of vehicle historical trajectories, and then determine the parameters of HMM (hidden Markov model) by historical data. Secondly, we adopt Viterbi algorithm to seek the double layers hidden states sequences corresponding to the just driven trajectory. Finally, we propose a new algorithm (DHMTP) for vehicle trajectory prediction based on the hidden Markov model of double layers hidden states, and predict the nearest neighbor unit of location information of the next k stages. The experimental results demonstrate that the prediction accuracy of the proposed algorithm is increased by 18.3% compared with TPMO algorithm and increased by 23.1% compared with Naive algorithm in aspect of predicting the next k phases' trajectories, especially when traffic flow is greater, such as this time from weekday morning to evening. Moreover, the time performance of DHMTP algorithm is also clearly improved compared with TPMO algorithm.