• Title/Summary/Keyword: HMGB1 Protein

Search Result 26, Processing Time 0.023 seconds

Inhibitory Effects of Lycopene on the Expression of Pro-inflammatory Genes in Human Vascular Endothelial Cells (혈관내피세포에서 라이코펜이 염증유전자 발현에 미치는 영향)

  • Kim, Tae-Hoon;Bae, Jong-Sup
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.287-293
    • /
    • 2012
  • Lycopene, found in tomatoes and tomato products, has antioxidant, anticancer, and anti-inflammatory effects. High-mobility-group box 1 (HMGB1) mediates the pro-inflammatory responses in several inflammatory diseases. In this study, the potential roles of lycopene in the HMGB1-mediated pro-inflammatory gene expressions in the primary human-umbilical-vein endothelial cells (HUVECs) were investigated. The data showed that HMGB1 upregulated the expressions of monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6), secretory phospholipase A2 (sPLA2)-IIA, and prostaglandin E2 (PGE2). Lycopene pre-incubation for 6 h decreased the HMGB1-mediated induction of MCP-1, IL-6, sPLA2-IIA, and PGE2. Further study revealed that the inhibitory effects of lycopene on the HMGB-1 induced expression of pro-inflammatory genes were mediated by the inhibition of two important inflammatory cytokines: tumor necrosis factor (TNF)-${\alpha}$ and nuclear factor (NF)-${\kappa}B$. These results suggest that HMGB1 upregulated the expression of pro-inflammatory genes and lycopene inhibited HMGB-1-induced pro-inflammatory genes by inhibiting TNF-${\alpha}$ and NF-${\kappa}B$. This finding will serve as an important evidence in the development of a new medicine for the treatment of inflammatory diseases.

HMGB1 Switches Alkylating DNA Damage-Induced Apoptosis to Necrosis (HMGB1에 의한 alkylating DNA 손상에 의해 유도된 세포사멸의 세포괴사로의 전환)

  • Lee, Su-Yeon;Jeong, Eui-Kyong;Jeon, Hyun-Min;Ju, Min-Kyung;Kim, Cho-Hee;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.953-960
    • /
    • 2011
  • Necrosis is characterized by the cell membrane rupture and release of the cellular contents, including high-mobility group box 1 protein (HMGB1), into the extracellular microenvironment. HMGB1 acts as a transcriptional regulator in nuclei, but exerts a pro-inflammatory and tumor-promoting cytokine activity when released into the extracellular space. Its overexpression is associated with tumor progression and chemoresistance. Thus, HMGB1 acts as a clinically important molecule in tumor biology. In this study, we examined whether HMGB1 affects cell death induced by anti-cancer drugs. Here we show that HMGB1 prevented cisplatin (alkylating agent)-induced apoptosis and switched the cell fate to necrosis in MCF-7, MDA-MB231, and MDA-MB361 cells. Similar apoptosis-to-necrosis switch effects of HMGB1 were observed in cells treated with 4-HC, another alkylating agent. In contrast, HMGB1 did not exert any significant effects on docetaxel (DOC)-induced apoptosis in MCF-7 cells. We also show that cisplatin-induced apoptosis was switched to necrosis in MCF-7 multicellular tumor spheroids (MTS) that were cultured for 8 days and had necrotic cores, but DOC-induced apoptosis was prevented without the apoptosis-to-necrosis switch. Finally, the levels of RAGE, a receptor of HMGB1, were increased with extended culture of MTS. These findings demonstrate that HMGB1 switches alkylating agent-induced apoptosis to necrosis, suggesting that the strategy to prevent necrosis occurring as an undesirable action of alkylating agent-based chemotherapy should be delineated to improve the efficacy of chemotherapy for cancer.

High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation (HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1179-1191
    • /
    • 2019
  • Cancer cells undergo the epithelial-mesenchymal transition (EMT) and show unique oncogenic metabolic phenotypes such as the glycolytic switch (Warburg effect) which are important for tumor development and progression. The EMT is a critical process for tumor invasion and metastasis. High-mobility group box 1 (HMGB1) is a chromatin-associated nuclear protein, but it acts as a damage-associated molecular pattern molecule when released from dying cells and immune cells. HMGB1 induces the EMT, as well as invasion and metastasis, thereby contributing to tumor progression. Here, we show that HMGB1 induced the EMT by activating Snail. In addition, the HMGB1/Snail cascade was found induce a glycolytic switch. HMGB1 also suppressed mitochondrial respiration and cytochrome c oxidase (COX) activity by a Snail-dependent reduction in the expression of the COX subunits COXVIIa and COXVIIc. HMGB1 also upregulated the expression of several key glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), and phosphoglycerate mutase 1 (PGAM1), in a Snail-dependent manner. However, HMGB1 was found to regulate some other glycolytic enzymes including lactate dehydrogenases A and B (LDHA and LDHB), glucose transporter 1 (GLUT1), and monocarboxylate transporters 1 and 4 (MCT1 and 4) in a Snail-independent manner. Transfection with short hairpin RNAs against HK2, PFKFB2, and PGAM1 prevented the HMGB1-induced EMT, indicating that glycolysis is associated with HMGB1-induced EMT. These findings demonstrate that HMGB1 signaling induces the EMT, glycolytic switch, and mitochondrial repression via Snail activation.

Anti-septic effects of dabrafenib on HMGB1-mediated inflammatory responses

  • Jung, Byeongjin;Kang, Hyejin;Lee, Wonhwa;Noh, Hyun Jin;Kim, You-Sun;Han, Min-Su;Baek, Moon-Chang;Kim, Jaehong;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.214-219
    • /
    • 2016
  • A nucleosomal protein, high mobility group box 1 (HMGB1) is known to be a late mediator of sepsis. Dabrafenib is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Inhibition of HMGB1 and renewal of vascular integrity is appearing as an engaging therapeutic strategy in the administration of severe sepsis or septic shock. Here, we examined the effects of dabrafenib (DAB) on the modulation of HMGB1-mediated septic responses. DAB inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses by enhancing the expressions of cell adhesion molecules (CAMs) in human endothelial cells. In addition, treatment with DAB inhibited the HMGB1 secretion by CLP and sepsis-related mortality and pulmonary injury. This study demonstrated that DAB could be alternative therapeutic options for sepsis or septic shock via the inhibition of the HMGB1 signaling pathway.

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells

  • Zhao, Mingyi;Yang, Minghua;Yang, Liangchun;Yu, Yan;Xie, Min;Zhu, Shan;Kang, Rui;Tang, Daolin;Jiang, Zhigang;Yuan, Wuzhou;Wu, Xiushan;Cao, Lizhi
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.601-606
    • /
    • 2011
  • HMGB1 is associated with human cancers and is an activator of autophagy which mediates chemotherapy resistance. We here show that the mRNA levels of HMGB1 are high in leukemia cells and it is involved in the progression of childhood chronic myeloid leukemia (CML). HMGB1 decreases the sensitivity of human myeloid leukemia cells K562 to anti-cancer drug induced death through up-regulating the autophagy pathway, which is confirmed by the observation with an increase in fusion of autophagosomes and autophagolysosomes. When overexpressing HMGB1, both mRNA levels of Beclin-1, VSP34 and UVRAG which are key genes involved in mammalian autophagy and protein levels of p-Bcl-2 and LC3-II are increased. Luciferase assays document that over-expression of HMGB1 increases the transcriptional activity of JNK and ERK, which may be silenced by siRNA. The results suggest that HMGB1 regulates JNK and ERK required for autophagy, which provides a potential drug target for therapeutic interventions in childhood CML.

SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis

  • Man Sup Kwak;Seoyeon Choi;Jiseon Kim;Hoojung Lee;In Ho Park;Jooyeon Oh;Duong Ngoc Mai;Nam-Hyuk Cho;Ki Taek Nam;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.25.1-25.17
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.

HMGB1 Promotes the Synthesis of Pro-IL-1β and Pro-IL-18 by Activation of p38 MAPK and NF-κB Through Receptors for Advanced Glycation End-products in Macrophages

  • He, Qiang;You, Hong;Li, Xin-Min;Liu, Tian-Hui;Wang, Ping;Wang, Bao-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1365-1370
    • /
    • 2012
  • The high mobility group box-1 (HMGB1) protein and NALP3 inflammasome have been identified to play important roles in inflammation and cancer pathogenesis, but the relationships between the two and cancer remain unclear. The current study investigated the relationship between HMGB1 and the NALP3 inflammasome in THP-1 macrophages. HMGB1 was found unable to activate the NALP3 inflammasome and failed to induce the release of the IL-$1{\beta}$ and IL-18 in THP-1 macrophages. HMGB1 was also found significantly enhanced the activity of ATP to induce IL-$1{\beta}$ and IL-18 by the induction of increased expression of pro-IL-$1{\beta}$ and pro-IL-18. This process was dependent on activation of RAGE, MAPK p38 and NF-${\kappa}B$ signaling pathway. These results demonstrate that HMGB1 promotes the synthesis of pro-IL-$1{\beta}$ and pro-IL-18 in THP-1 macrophages by the activation of p38 MAPK and NF-${\kappa}B$ through RAGE. HMGB1 likely plays an important role in the first step of the release of the IL-$1{\beta}$ and IL-18, preparing for other cytokines to induce excessive release of IL-$1{\beta}$ and IL-18 which promote inflammation and cancer progression.

Exploring the beneficial role of telmisartan in sepsis-induced myocardial injury through inhibition of high-mobility group box 1 and glycogen synthase kinase-3β/nuclear factor-κB pathway

  • Jin, Yan;Wang, Hong;Li, Jing;Dang, Minyan;Zhang, Wenzhi;Lei, Yan;Zhao, Hao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • In the present experimental study, cecal ligation and puncture significantly increased the myocardial injury assessed in terms of excess release of creative kinase-MB (CK-MB), cardiac troponin I (cTnI), interleukin (IL)-6 and decrease of IL-10 in the blood following 12 h of laparotomy procedure as compared to normal control. Also, a significant increase in protein expression levels of high-mobility group box 1 (HMGB1) and decreased phosphorylation of glycogen synthase kinase-3β (GSK-3β) was observed in the myocardial tissue as compared to normal control. A single independent administration of telmisartan (2 and 4 mg/kg) and AR-A014418 (1 and 2 mg/kg) substantially reduced sepsis-induced myocardial injury in terms of decrease levels of CK-MB, cTnI and IL-6, HMGB1, GSK-3β and increase in IL-10 and p-GSK-3β in the blood in sepsis- subjected rats. The effects of telmisartan at dose 4 mg/kg and AR-A014418 at a dose of 2 mg/kg were significantly higher than the telmisartan at a dose of 2 mg/kg and AR-A014418 1 mg/kg respectively. Further, no significant effects on different parameters were observed in the sham control group in comparison to normal. Therefore it is plausible to suggest that sepsis may increase the levels of angiotensin II to trigger GSK-3β-dependent signaling to activate the HMGB1/receptors for advanced glycation end products, which may promote inflammation and myocardial injury in sepsis-subjected rats.

Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

  • Yu, Wan-Guo;He, Hao;Yao, Jing-Yun;Zhu, Yi-Xiang;Lu, Yan-Hua
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.549-556
    • /
    • 2015
  • Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key "late" proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKC${\alpha}$). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKC${\alpha}$ signaling pathway.