• Title/Summary/Keyword: HLW

Search Result 177, Processing Time 0.035 seconds

Engineering-scale Test for Validating the T-H-M Behavior of a HLW Repository: Experimental Set-up

  • Lee, Jae-Owan;Baik, Min-Hoon;Cho, Won-Jin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.194-198
    • /
    • 2004
  • The thermo-hydro-mechanical (T-H-M) process is one of major issues in the performance assessment of a high level waste (HLW) repository. An engineering-scale test was planned and its experimental set-up has being installed, to validate the T-H-M behavior in the buffer of a reference disposal system. The experimental set-up consists of 4 major components: the confining cylinder with its hydration water tank, the bentonite block, the heating system, and the sensors and instruments. The monitoring and data acquisition system is employed to control the heater to maintain the temperature of $95^{\circ}C$ at the interface of the heater and bentonite blocks and to collect signals from sensors and instruments installed in the bentonite blocks.

  • PDF

The Hydrogeological Conditions in the Granitic Area for the Research Program of HLW Disposal in Korea

  • Kim, Chunsoo;Daeseok Bae;Kim, Kyungsu;Yongkwon Koh;Kim, Geonyoung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.51-59
    • /
    • 2004
  • The geological research as a part of HLW disposal program in Korea is carried out to provide necessary data for the establishment of the reference repository system in term of design and safety assessment in the crystalline rock terrains. Six deep boreholes were drilled to obtain hydrogeological and hydrochemical data from Jurassic granites in the Yuseong area, Korea. The core observation, televiewer logging and hydraulic testing were carried out during and after drilling and multi-packer system were installed in the boreholes of 500m depth for hydraulic and hydrochemical monitoring including environmental isotopes. The integration of hydrogeochemical and hydrodynamic data would be built greater confidence for the understanding of groundwater system in fractured rock mass. This geoscientific program could be possible to suggest a general guideline to develop the reference disposal concept of high-level radioactive waste in Korea.

  • PDF

Technology Assessment of the Repository Alternatives to Establish a Reference HLW Disposal Concept

  • Choi, Jong-Won;Choi, Young-Sung;Kwon, Sang-Ki;Kuh, Jung-Eui;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-100
    • /
    • 1999
  • As disposal packaging concepts of spent fuels generated from the domestic NPP, two types, one is to package PWR and CANDU spent fuels in different containers and the other is to package them together, were proposed. The configuration of the containers and the layout of underground repository, such as the container spacing and the deposition tunnel spacing, were developed. The layout of underground repository satisfies the thermal constraint of the bentonite buffer surrounding disposal container, which should be lower than $100^{\circ}C$ in order to keep the physical and chemical properties of bentonite From the spent fuel packaging concepts and container emplacement methods, seven options were developed. With a typical pair-wise comparison methods, AHP, the most promising disposal concept was selected based on the technology Point of view.

  • PDF

Two-Dimensional Nuclide Transport Around a HLW Repository

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hwang, Yong-Soo;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.432-443
    • /
    • 1999
  • Using a two-dimensional numerical model, nuclide transport in the buffer between the canister and adjacent rock in a high-level radioactive waste repository is dealt with. Calculations are made for a typical case with a three-member decay chain, $^{234}$ U longrightarrow $^{230}$ Th longrightarrow $^{226}$ Ra. The solution method used here is based on a physically exact formulation by a control volume method directly integrating the governing equation over each control volume.

  • PDF