• Title/Summary/Keyword: HL-60 Cells

Search Result 343, Processing Time 0.03 seconds

The Effect of Litsea japonica on the Apoptosis Induction of HL-60 Leukemia Cells (까마귀쪽나무(Litsea japonica)의 HL-60 백혈병 세포 Apoptosis 유도효과)

  • Kim, Elvira;Boo, Hye-Jin;Hyun, Jae-Hee;Kim, Sang-Cheol;Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • YAKHAK HOEJI
    • /
    • v.53 no.1
    • /
    • pp.6-11
    • /
    • 2009
  • This study investigated the antiproliferative effect of the EtOH extract from Litsea japonica. The extract markedly inhibited the growth of HL-60 cells. When treated with the extract, several apoptosis events like as DNA fragmentation, chromatin condensation and the increase of the population of sub-G1 hypodiploid cells were observed. The extract decreased the Bcl-2 expression, whereas the Bax expression was increased. Caspase-9 and -3 were activated and poly (ADP-ribose) polymerase was cleaved. The results suggest that the antiproliferative effect of L. japonica in HL-60 appears to arise from apoptosis induction via the down-regulation of Bcl-2 and the activation of caspases.

A Study on Apoptotic Signaling Pathway in HL-60 Cells Induced by Radiation (급성전골수성백혈병 HL-60 세포주에서 방사선조사에 의한 세포고사기전)

  • Kim Hye Jung;Moon Sung Keun;Lee Jae Moon;Moon Sun Rock
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • Purpose : The mechanical insights of death of cancer cells by ionizing radiation are not of yet clearly defined. Recent evidences have demonstrated that radiation therapy may induce cell death via activation of signaling pathway for apoptosis in target cells. This study is designed whether ionizing radiation may activate the signaling cascades of apoptosis including caspase family cysteine pretenses, $Bcl_2/Bax$, cytochrome c and Fas/Fas-L in target cells. Materials and Methods : HL-60 cells were irradiated in vitro with 6 MV X-ray at dose ranges from 2 Gy to 32 Gy. The cell viability was tested by M assay and the extent of apoptosis was determined using agarose gel electrophoresis. The activities of caspase proteases were measured by proteolytic cleavages of substrates. Western blot analysis was used to monitor PARP, Caspase-3, Cytochrome-c, Bcl-2, Bax, Fas and Fas-L. Results : Ionizing radiation decreases the viability of HL-60 cells in a time and dose dependent manner. Ionizing radiation-induced death in HL-60 cells is an apoptotic death which is revealed as characteristic ladder-pattern fragmentation of genomic DNA over 16 Gy at 4 hours. ionizing radiation induces the activation of caspase-2, 3, 6, 8 and 9 of HL-60 cells in a time-dependent manner. The activation of caspase-3 pretense is also evidenced by the digestion of poly (ADP-ribose) polymerase and procaspase 3 with 16Gy ionizing irradiation. Anti-apoptotic Bcl2 expression is decreased but apoptotic Bax expression is increased with mitochondrial cytochrome c release in a time- dependent manner. In addiiton, expression of Fas and Fas-L is also increased in a time dependent manner. Conclusion : These data suggest that ionizing radiation-induced apoptosis is mediated by the activation of various signaling pathways including caspase family cysteine proteases, $Bcl_2/Bax$, Fas and Fas-L in a time and dose dependent manner.

  • PDF

Feedback Regulation of ATP-induced $Ca^{2+}$ Signaling in HL-60 Cells

  • Lee, Hyosang;Suh, Byung-Chang;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.33-33
    • /
    • 1997
  • In HL-60 cells, extracellular A TP increases intracellular $Ca^{2+}$ ([Ca$^{2+}$]$_{i}$) in a concentration-dependent manner with the maximal response occurring around 10 $\mu$M. However, above the maximal responsive concentration ATP elicits different patterns of $Ca^{2+}$ signaling.(omitted)d)

  • PDF

Inducing effect of helenalin on the differentiation of HL-60 leukemia cells

  • KIm, Seung-Hyun;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.166.3-167
    • /
    • 2003
  • Helenalin, a cell-permeable pseudoguainolide sesquiterpene lactone, is a potent anti-inflammatory agent that inhibits $NF-{\kappa}B$ DNA binding activity by selectively alkylating the p65 subunit of $NF-{\kappa}B$. Transcription factors such as $NF-{\kappa}B$ provide powerful target of drugs to use in the treatment of cancer. Human promyelocytic leukemia HL-60 cells are differentiated into monocytic or granulocytic lineage when treated with 1,25-dihydroxyvitamin $D_3{\;}[1,25-(OH)_2D_3]$ or all-trans-retinoic acid (ATRA), respectively. (omitted)

  • PDF

23-hydroxyursolic acid Induces Apoptosis of human leukemia HL-60 cells

  • Heon, Won-Jong;Shin, kyung-Min;Rim, Seo-Bo;Park, Hee-Jun;Park, Jong-Won;Lee, Kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.318.1-318.1
    • /
    • 2002
  • We found that 23-hydroxyursolic acid, triterpenoid was isolated from Cussonia bancoensis have a significant cytotoxic activity against HL -60 human promyelocytic leukemia cells. The IC of 23-hydroxyursolic acid was 32.83 $\mu$M. These anti-proliferative activity was due to induction of apoptosis. The effect of apoptosis was identified by DNA laddering, DAPI assay. PI staining, and Annerxin V-FITC binding assay. (omitted)

  • PDF

Comparison between Doxorubicin and Anti-Fas Antibody induced poptosis in Promyelocytic Leukemia Cell Line HL-60 (전골수성 백혈병 세포주 HL-60에 대한 Doxorubicin 유발성 Apoptosis와 Anti-Fas 항체 유발성 Apoptosis의 비교)

  • 윤경식;설지연;오현정;이광수;이원규;정성철
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 1999
  • Induction of apoptosis is considered to be the underlying mechanism that accounts for the efficiency of chemotherapeutic drugs. It has recently been proposed that doxorubicin (DOX) can induce apoptosis in human leukemic cells via the Fas/Fas Ligand (FasL) system. Comparison of Fas and FasL mRNA expression between drug- and anti-Fas antibody(Fas-Ab)- induced apoptosis was analyzed for examining the role of Fas/FasL system in the mediation of drug-induced apoptosis. After HL-60 cells were routinely cultured, MTT assay was performed for cytotoxicity test. Giemsa staining was carried out to monitor the apoptosis morphologically. By semiquantitative RT-PCR analysis, the expression of Fas and FasL at 4, 10, 24 hours was determined after DOX and Fas-Ab treatment. Dose-dependent cytotoxicity was induced by DOX-treatment, while Fas-Ab treatment showed the similar dose-dependent pattern but the cytotoxicity is not reached at LD$_{50}$ at 100 ng/ml concentration of Fas-Ab. In the 10ng/m1 DOX and 10ng/m1 Fas-Ab treated group, typical apoptotic cell morphology was shown such as fragmented nuclei and cell membrane budding in the Giemsa-stained slide. Fas mRNA expression was not changed significantly in the both groups. But, FasL mRNA expression was induced significantly at initial period of apoptosis. In this study, Fas/FasL interaction assumed to be involved in drug-induced apoptosis.s.

  • PDF

Enhanced biological effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant, on HL60 cells

  • Chung, Hee-Kyoung;Kim, Sung-Woo;Byun, Sung-June;Ko, Eun-Mi;Chung, Hak-Jae;Woo, Jae-Seok;Yoo, Jae-Gyu;Lee, Hwi-Cheul;Yang, Byoung-Chul;Kwon, Moo-Sik;Park, Soo-Bong;Park, Jin-Ki;Kim, Kyung-Woon
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.686-691
    • /
    • 2011
  • Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia.

Diallyl Disulfide Enhances Daunorubicin-Induced Apoptosis of HL-60 Cells (HL-60 세포에서 Diallyl Disulfide의 Daunorubicin 유발 Apoptosis 항진효과)

  • 구본선;양정예;손희숙;권강범;지은정
    • Journal of Nutrition and Health
    • /
    • v.36 no.8
    • /
    • pp.828-833
    • /
    • 2003
  • Dially disulfide (DADS), a component of garlic (Allium sativum), has been known to exert potent chemopreventive activity against various cancers. In this study, the synergistic effect of DADS and daunorubicin on the cytotoxicity of HL-60 cells, a human leukemia cell line, was investigated. DADS at 25 M greatly potentiated daunorubicin-induced cell death, decreasing cell viabilityto50%ofthe control. Daunorubicin-induced apoptosis was accompanied by the activation of caspase-3, the degradation of poly-(ADP-ribose) polymerase (PARP) and D4-GDI, and DNA fragmentation, which were blocked by pre-treatment with acetyl-Asp-Glu-Val-Asp- dialdehyde (Ac-DEVD-CHO). Treatment that combined 25 M DADS and 100 nM daunorubicin caused a similar degree of caspase-3 activation, PARP and D4-GDI degradation, and DNA fragmentation to that caused by treatment with 250 nM daunorubicin alone. These results indicate that combined therapy using daunorubicin with DADS, a component of food, and garlic can effectively decrease the therapeutic dose of daunorubicin, preventing the severe side effects of daunorubicin.

The Protective Mechanism of Zinc in Fungal Metabolite Gliotoxin-induced Apoptosis (진균독소 Gliotoxin에 의한 세포고사에서 Zinc의 예방적 역할)

  • Park, Ji-Sun;So, Hong-Seob;Kim, Myung-Sunny;Jung, Byung-Hak;Choi, Ik-Jun;Jin, Gyung-Ho;Jin, Sung-Ho;Kim, Nam-Song;Cho, Kwang-Ho;Park, Rae-Kil
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • Gliotoxin, a fungal metabolite, is one of the epipolythiodioxopiperazine classes and has a variety of effects including immunomodulatory and apoptotic agents. This study is designed to evaluate the effect of zinc on gliotoxin-induced death of HL-60 cells. Here, we demonstrated that treatment of gliotoxin decreased cell viability in a dose and time-dependent manner. Gliotoxin-induced cell death was confirmed as apoptosis characterized by chromatin margination, fragmentation and ladder-pattern digestion of genomic DNA. Gliotoxin increased the proteolytic activities of caspase 3, 6, 8, and 9. Caspase-3 activation was further confirmed by the degradation of procaspase-3 and PARP in gliotoxin-treated HL-60 cells. Zinc compounds including $ZnCl_2$ and $ZnSO_4$ markedly inhibited gliotoxin-induced apoptosis in HL-60 cells (from 30% to 90%). Consistent with anti-apoptotic effects, zinc also suppressed the enzymatic activities of caspase-3 and -9 proteases. In addition, cleavage of both PARP and procaspase 3 in gliotoxin-treated HL-60 cells was inhibited by the addition of zinc compounds. We further demonstrated that expression of Fas ligand by gliotoxin was suppressed by zinc compounds. These data suggest that zinc may prevent gliotoxin-induced apoptosis via inhibition of Fas ligand expression as well as suppression of caspase family cysteine proteases-3 and -9 in HL-60 cells.

  • PDF