• Title/Summary/Keyword: HIgh viscosity

Search Result 1,818, Processing Time 0.035 seconds

Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages (고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구)

  • Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Lee, Jeung-Min;Seo, Min Seok;Choi, Kyoung Hwa
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.20-29
    • /
    • 2013
  • Paper, textile and wood materials are mainly consisted of cellulose. Cellulose is high molecule and make up the strong crystalline structure by hydrogen bonds. In particular, the polymerization degree of cellulose are closely related to the strength of fiber, and the permanence. the useful life of fiber, also depends on the degradation of this substance. The viscosity of cellulose is considered to be an important indicator of fiber damage in high molecule polymers. The viscosity measurements with CED solution is used to measure the molecular weight and the degree of polymerization of cellulose. Cellulose viscosity of wood fibers is measured with TAPPI standard method T230. However, TAPPI standard method T230 is difficult to completely dissolving the cellulose of high molecular weight and large degree of polymerization, such as Korea traditional papers and fabrics made with mulberry, ramie, cotton fibers. In this study, The high viscosity of hanji and fabric was measured with TAPPI standard method T254. T254 method is that the cellulose specimen with the proper amount of weaker (0.167M CED) solution, and completely dissolved with the stronger (1.0M CED) solution. It was found that cellulose with high degree of polymerization was dissolved more easily in general CED method.

  • PDF

Experimental Study on the Viscosity Characteristics of Diluted Engine Oils with Diesel Fuel (경유혼입 디젤엔진오일의 점도특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study was conducted to evaluate the viscosity characteristics of multi-grade engine oils in which contain diesel fuels. Unused engine oils of SAE 5W40, 10W40 and 15W40 were blended with a diesel fuel ratio of 5%, 10%, and 15%. The viscosity of a diluted engine oil was measured with temperature variation ranging from $-20^{\circ}C$ to $120^{\circ}C$ using a rotary viscometer. The diluted engine oil in which is blended to a diesel fuel plays an important role for decreasing an engine oil viscosity, which may decrease the oil film thickness and a load-carrying capacity. Test results show that the viscosity tends to fall for the increased temperature when engine oil is mixed with a diesel fuel. Especially, the viscosity at a low temperature zone is radically decreased compared with a high temperature zone. Based on the experimental results, the empirical equation that can predict the viscosity of diluted engine oil is expressed in the exponential function with the variation of the temperature and a fuel ratio of diluted engine oil. This equation may be possible to predict the limitation of the oil-fuel dilution rate at the concept design stage of the CDPF system, which doesn't affect the influence of the tribological components.

Effect of the imported bituminous coal and the domestic anthracite coal mixed with petroleum coke (석유코크스와 혼합된 국내무연탄과 수입유연탄 슬래그의 특성 규명)

  • Kim, Min-Kyung;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.230-233
    • /
    • 2008
  • The vanadium rich ash of petroleum coke can give a slagging problem during because of the high melting point of $V_2O_3$. For continuous removal of the slag, petroleum coke is often mixed with coal, and the viscosity of the mixed slag is an important property, determining the gasification temperature. The viscosities of the mixed slag from various mixing ratios of petroleum coke and a bituminous coal were investigated. When mixed with a crystalline coal slag, $T_{cv}$ was increased at a higher the coke content in the mixed feed. When the $V_2O_3$ concentration was greater than 4.5%, it was difficult to get accurate measurements of $T_{cv}$. The SEM/EDX analyses of the cooled slag revealed that the major crystalline phase was anorthite, and $T_{cv}$ should be related to the formation temperature of anorthite. The SEM/EDX analyses also showed that, at low concentrations of vanadium, part vanadium formed a crystalline phase with Al-Si-Ca-Fe, and the rest remained in the glassy phase, suggesting that vanadium existed as a slag component at the low viscosity region. At a high concentration, vanadium forms a phase with Ca, and the Ca-V phase was separated from the slag phase, and formed a layer above the slag. FeO in petroleum coke also played an important role determining viscosity: at high temperatures, increased FeO lowered the viscosity, but as it formed a spinel phase, the depletion of FeO in the slag resulted in a higher viscosity.

  • PDF

Preparation and Evaluation of Low Viscosity Acrylic Polymer Based Pretreatment Solution for DTP Reactive Ink (DTP 반응성 잉크용 저점도 아크릴계 고분자 전처리액 제조 및 특성 평가)

  • Kim, Hyeok-Jin;Seo, Hye-Ji;Kwak, Dong-Sup;Hong, Jin-Pyo;Yoon, Seok-Han;Shin, Kyung
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.122-130
    • /
    • 2017
  • In the direct digital textile printing process, the pre-treatment process is an essential condition for products by forming a clear pattern by sticking and penetration of DTP dye without spreading on the fabric. Recently, pre-treatment agent is changing from high viscosity to low viscosity in order to reduce defects of fabric during pre-treatment process. In this study, pre-treatment agent of acrylic polymer with low viscosity(less than 50cps) was prepared according to the solid content of the polymer, pre-treated on the cotton fabric, and direct DTP printing was performed to compare the color and sharpness. As a result, it showed high color at a viscosity of 50cps or less. When the solid content of the polyacrylic acid having a high molecular weight(A1) was 2.5wt%, when the solid content of the polyacrylic acid having a low molecular weight(A2) was 1 - 1.5wt%, the color was the best. And when the solid content of A1 and A2 was 1.5wt%, the degree of spreading was small and A1 was superior to A2 at the sharpness.

The effect of dilution solvent ratio on dewaxing of waxy oils (Waxy Oil 탈납에 있어서 용제희석의 영향)

  • 김주항
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.34-43
    • /
    • 1987
  • The effect of dilution solvent ratio, and the mixing ratio of MEK and toluene on the solvent dewaxing process has been studied. The results of this study are Summarized as follows; 1. The best mixing ratio of solvent of MEK process and Toluene when in case of light and medium Waxy oils, which has low viscosity was 48: 52, and when in case of heavy waxy oil, which has high viscosity was 45: 55. 2. The best dilution solvent ratio when in case of low viscosity oils. was 1:2.8 against waxy oils after annexing 5 times divided as well as, when incase of high viscosity oil was 1:3.5 after annexing 2 times divided. 3. The chilling temperature was -26$\circ$C and the reguired dewaxing time depends on the viscosity of waxy oils.

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

Molecular Dynamics Simulation Studies of Viscosity and Diffusion of n-Alkane Oligomers at High Temperatures

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3909-3913
    • /
    • 2011
  • In this paper we have carried out molecular dynamics simulations (MD) for model systems of liquid n-alkane oligomers ($C_{12}{\sim}C_{80}$) at high temperatures (~2300 K) in a canonical ensemble to calculate viscosity ${\eta}$, self-diffusion constants D, and monomeric friction constant ${\zeta}$. We found that the long chains of these n-alkanes at high temperatures show an abnormality in density and in monomeric friction constant. The behavior of both activation energies, $E_{\eta}$ and $E_D$, and the mass and temperature dependence of ${\eta}$, D, and ${\zeta}$ are discussed.

A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle (고속주축의 회전정밀도 성능평가에 관한 연구)

  • 김종관;이중기
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF

Influence of Lubricating Oil Environments on Behavior of Cavitation Erosion for Alloy Metals of Bearing (베어링 합금재에 대한 캐비테이션 침식 거동에 미치는 윤활제 환경의 영향)

  • 임우조;이진열
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.55-61
    • /
    • 1993
  • Recently, due to the erosion damage that were generated increasingly at alloy metals of slide bearing by cavity of lubricating oil with tendency of high speed and high output of reciprocating engine, there is a need to study the process on the formation of cavitation erosion, and the characteristic of cavitation erosion at lubricating oil environments under various condition for marine ship. Therefore, the apparatus of cavitation erosion experiment used 20 KHz, $24 \mu m$ piezoelectric vibrator. The main results obtained through this test method are as follows: 1. The max. erosion rate at lubricating oil environments was related to the change of space, oil film thickness, and shown to tendency of gear oil>system oil>turbine oil>mixed oil environments with different viscosity. 2. The pitted hole by cavitation erosion at high viscosity oil environments became small and deep, and in addition to, they appeared to be wide and shallow at low viscosity.