DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Studies of Viscosity and Diffusion of n-Alkane Oligomers at High Temperatures

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Received : 2011.07.28
  • Accepted : 2011.08.31
  • Published : 2011.11.20

Abstract

In this paper we have carried out molecular dynamics simulations (MD) for model systems of liquid n-alkane oligomers ($C_{12}{\sim}C_{80}$) at high temperatures (~2300 K) in a canonical ensemble to calculate viscosity ${\eta}$, self-diffusion constants D, and monomeric friction constant ${\zeta}$. We found that the long chains of these n-alkanes at high temperatures show an abnormality in density and in monomeric friction constant. The behavior of both activation energies, $E_{\eta}$ and $E_D$, and the mass and temperature dependence of ${\eta}$, D, and ${\zeta}$ are discussed.

Keywords

References

  1. Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261. https://doi.org/10.1007/BFb0050985
  2. Fox, T. G.; Flory, P. J. J. Phys. Colloid Chem. 1951, 55, 221. https://doi.org/10.1021/j150485a010
  3. Lodge, T. P.; Rotstein, N. A.; Prager, S. Adv. Chem. Phys. 1990, 9, 1.
  4. Ferry, J. D. Viscoelastic Properties of Polymers; 3rd ed.; Wiley: New York, 1980.
  5. Fleisher, G. Polym. Bull. (Berlin) 1983, 9, 152.
  6. Pearson, D. S.; Ver Strate, G.; von Meerwall, E.; Schilling, F. C. Macromolecules 1987, 20, 1133. https://doi.org/10.1021/ma00171a044
  7. Von Meerwall, E.; Beckman, S.; Jang, J.; Mattice, W. L. J. Chem. Phys. 1998, 108, 4299. https://doi.org/10.1063/1.475829
  8. Tirrell, M. Rubber Chem. Technol. 1984, 57, 523. https://doi.org/10.5254/1.3536019
  9. De Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, New York, 1979.
  10. Mundy, C. J.; Siepmann, J. I.; Klein, M. L. J. Chem. Phys. 1995, 102, 3376. https://doi.org/10.1063/1.469211
  11. Cui, S. T.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 104, 255. https://doi.org/10.1063/1.470896
  12. Cui, S. T.; Gupta, S. A.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 105, 1214. https://doi.org/10.1063/1.471971
  13. Evans, D. J. J. Chem. Phys. 1983, 78, 3297. https://doi.org/10.1063/1.445195
  14. Brown, D.; Clarke, J. H. R. Mol. Phys. 1984, 51, 1243. https://doi.org/10.1080/00268978400100801
  15. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106, 6638. https://doi.org/10.1021/ja00334a030
  16. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Prentice-Hall, Englewood Cliffs, NJ, 1971.
  17. Andersen, H. J. Comput. Phys. 1984, 52, 24.
  18. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford: Oxford Univ. Press, 1987; p 81.
  19. McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 1976.
  20. Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. J. Chem. Phys. 1990, 93, 7137. https://doi.org/10.1063/1.459437
  21. Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306
  22. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156. https://doi.org/10.1063/1.470344
  23. Nederbragt, G. W.; Boelhouwer, J. W. M. Physica 1947, 13, 305. https://doi.org/10.1016/0031-8914(47)90002-5
  24. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7161.
  25. Ertl, H.; Dullien, F. A. L. AIChE J. 1973, 19, 1215. https://doi.org/10.1002/aic.690190619
  26. Cohen, M. H.; Tumbull, D. J. Chem. Phys. 1959, 31, 1164. https://doi.org/10.1063/1.1730566
  27. Mendelson, R. A.; Bowles, W. A.; Finer, F. L. J. Polym. Sci., Part A-2, 1970, 8, 105. https://doi.org/10.1002/pol.1970.160080109
  28. Raju, V. R.; Smith, G. G.; Marin, G.; Knox, J. R.; Graessley, W. W. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 1183. https://doi.org/10.1002/pol.1979.180170704
  29. Harandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N. Macromolecules 1998, 31, 7934. https://doi.org/10.1021/ma980698p

Cited by

  1. vol.36, pp.4, 2015, https://doi.org/10.1002/bkcs.10218
  2. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains. vol.143, pp.14, 2011, https://doi.org/10.1063/1.4932601
  3. A deep insight into the polystyrene chain in cyclohexane at theta temperature: molecular dynamics simulation and quantum chemical calculations vol.25, pp.7, 2019, https://doi.org/10.1007/s00894-019-4078-4
  4. Static and dynamic properties of mid-size liquidn-alkanes, C12∼C400: a molecular dynamics simulation study vol.45, pp.18, 2011, https://doi.org/10.1080/08927022.2019.1651932
  5. Molecular dynamics simulation of polystyrene copolymer with octyl short-chain branches in toluene vol.26, pp.4, 2020, https://doi.org/10.1007/s00894-020-4339-2