• Title/Summary/Keyword: HIgh viscosity

Search Result 1,818, Processing Time 0.032 seconds

Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment) (박판성형 해석용 마찰모델 (1부 : 실험))

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

Effect of Properties of CMC on the Characteristics of Coating Color (CMC의 물성이 도공액의 특성에 미치는 영향)

  • Park, Chong-Yawl;Kim, Byeong-Soo;Jung, Hyeun-Chae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.82-86
    • /
    • 1996
  • This study was performed to elucidate the effect of degree of substitution and degree of polymerization of CMC on the rheological characteristics of coating color which is consisted of calcium carbonate as pigment. The results were as follows: 1. It appeared that DP of CMC rather DS has an effect on the low shear viscosity of coating color. 2. According as shear rate increased, the effect of DP and DS on high shear viscosity of coating color decreased. 3. According to increasing DS and DP, the water retention of coating color increased.

  • PDF

Friction Model of Sheet Metal Forming Considering Lubricant and Surface Roughness (윤활과 표면조도를 고려한 박판 성형 마찰 모델)

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.543-550
    • /
    • 2001
  • In order to find the effect of material property and lubricant viscosity on the frictional characteristics a sheet metal friction tester was designed and tensile test, surface roughness test, and friction test were performed with several kinds of drawing oils. Test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, friction coefficient is also high. Using these test results, the friction model considering lubricant viscosity and surface roughness is developed. The validity and accuracy of the friction model are shown by comparing the punch loads among FEM analysis results employing current friction model and conventional friction model respectively and experimental measurement.

  • PDF

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipment (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • 권완섭;문우식;윤한희;김경웅
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required propertied and performances were discussed.

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.

Study on Mixing Characteristic and Rheology of Polymer/Graphite Composites for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 고분자/흑연 복합 재료의 혼합 및 유변학적 특성에 관한 연구)

  • Yoo, Tae-Hyun;Kim, Dong-Hak;Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4673-4678
    • /
    • 2011
  • In this paper, studies on a mixing characteristic and viscosity measurement of polymer/graphite composites for a bipolar plate of the polymer electrolyte membrane fuel cell were presented. Since the materials for the bipolar plate should be electrically conductive, contents of solid graphite in the composite are very high. As a consequence, a viscosity of the polymer/graphite composite used for the bipolar plate is very high and the measurement of the viscosity is difficult. Viscosity measurements of the polymer/graphite composites were not possible because pressure drops were continuously fluctuated during the viscosity measurements when a conventional capillary die was used. After the die design was optimized, the steady state pressure drop could be achieved, but the viscosity thus measured was not reproducible. After many trials with different experimental techniques, it was found that melt blending of the grinded powder mixtures of both PET and graphite provides reproducible viscosity measurements and electric conductivities of the polymer/graphite composites.

The Effect of Pressure on Viscosity in Grooved Hydraulic Spool Valves (압력에 따른 점도변화가 그루브를 한 유압 스푸울 밸브에 미치는 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.307-313
    • /
    • 2006
  • In this paper, a theoretical analysis is carried out to study the effect of viscosity variation with pressure in multiply grooved moving hydraulic spool valves. Analytical expressions for pressure distribution in the clearance and leakage flowrate are obtained solving one-dimensional Reynolds. For constant viscosity, an analytical expression for lateral force is also presented. The results showed that variation of viscosity with pressure affect highly on pressure distribution, leakage flowrate and lateral forces in hydraulic spool valves. Therefore additional intensive studies, including numerical analysis for two-dimensional Reynolds, should be required to investigate detailed lubrication characteristics of spool valves for high pressure.

Study on the pre-tilt level and uniformity of low rotational viscosity LC for fast response time

  • Lee, D.J.;Hwang, J.I.;Ko, T.W.;Choi, H.C.;Lee, S.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.457-459
    • /
    • 2005
  • Low viscosity LCs have been developed for fast response time improvement of the TFT-LCD Monitors based on TN mode. This low viscosity characteristic s cause the pretilt angle to be changed and the uniformity to degrade. We have studied on the pretilt angle effect by the various components used for low viscosity LCs. We prepared the panels by using these various components and measured pretilt angle for this research. As a result of this research, we have found out that each low viscosity component has the different pretilt angle level and uniformity. For good display quality, it is important to keep the stable pretilt angle. The low viscosity LCs with this stable pretilt angle make it possible to prepare the high performance TFT-LCD Monitor with both fast response time characteristics and good display quality

  • PDF

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

A Fundamental Study on the Properties of High-Fluidity Concrete Using Viscosity Agent - Properties of Hardened Concrete - (증점제를 이용한 고유동콘크리트의 특성에 관한 기초적 연구 -경화상태의 특성-)

  • 김기철;박상준;조병영;윤기원;최응규;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.198-201
    • /
    • 1996
  • The purpose of this study is to analyze the properties of high fluidity concrete using the viscosity agent of a cellulose system with W/C of 35~50% in hardened state. It is proven that properties of high fluidity concrete in hardened state is nearly the same with normal concrete in the same W/C and no strength difference by tamping method do not appeared. Therefore, no tamping method is thought to be reguired in high fluidity concrete.

  • PDF