• Title/Summary/Keyword: HIGH-RESOLUTION SATELLITE IMAGERY CLASSIFICATION, PIXEL-BASED CLASSIFICATION

Search Result 13, Processing Time 0.022 seconds

Mapping of Vegetation Cover using Segment Based Classification of IKONOS Imagery

  • Cho, Hyun-Kook;Lee, Woo-Kyun;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • This study was performed to prove if the high resolution satellite imagery of IKONOS is suitable for preparing digital vegetation map which is becoming increasingly important in ecological science. Seven classes for forest area and five classes for non-forest area were taken for classification. Three methods, such as the pixel based classification, the segment based classification with majority principle, and the segment based classification with maximum likelihood, were applied to classify IKONOS imagery taken in April 2000. As a whole, the segment based classification shows better performance in classifying the high resolution satellite imagery of IKONOS. Through the comparison of accuracies and kappa values of the above 3 classification methods, the segment based classification with maximum likelihood was proved to be the best suitable for preparing the vegetation map with the help of IKONOS imagery. This is true not only from the viewpoint of accuracy, but also for the purpose of preparing a polygon based vegetation map. On the basis of the segment based classification with the maximum likelihood, a digital vegetation map in which each vegetation class is delimitated in the form of a polygon could be prepared.

Object-oriented Classification and QuickBird Multi-spectral Imagery in Forest Density Mapping

  • Jayakumar, S.;Ramachandran, A.;Lee, Jung-Bin;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.153-160
    • /
    • 2007
  • Forest cover density studies using high resolution satellite data and object oriented classification are limited in India. This article focuses on the potential use of QuickBird satellite data and object oriented classification in forest density mapping. In this study, the high-resolution satellite data was classified based on NDVI/pixel based and object oriented classification methods and results were compared. The QuickBird satellite data was found to be suitable in forest density mapping. Object oriented classification was superior than the NDVI/pixel based classification. The Object oriented classification method classified all the density classes of forest (dense, open, degraded and bare soil) with higher producer and user accuracies and with more kappa statistics value compared to pixel based method. The overall classification accuracy and Kappa statistics values of the object oriented classification were 83.33% and 0.77 respectively, which were higher than the pixel based classification (68%, 0.56 respectively). According to the Z statistics, the results of these two classifications were significantly different at 95% confidence level.

Method for classification and delimitation of forest cover using IKONOS imagery

  • Lee, W.K.;Chong, J.S.;Cho, H.K.;Kim, S.W.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.198-200
    • /
    • 2003
  • This study proved if the high resolution satellite imagery of IKONOS is suitable for preparing digital forest cover map. Three methods, the pixel based classification with maximum likelihood (PML), the segment based classification with majority principle(SMP), and the segment based classification with maximum likelihood(SML), were applied to classify and delimitate forest cover of IKONOS imagery taken in May 2000 in a forested area in the central Korea. The segment-based classification was more suitable for classifying and deliminating forest cover in Korea using IKONOS imagery. The digital forest cover map in which each class is delimitated in the form of a polygon can be prepared on the basis of the segment-based classification.

  • PDF

Land Use Classification in Very High Resolution Imagery by Data Fusion (영상 융합을 통한 고해상도 위성 영상의 토지 피복 분류)

  • Seo, Min-Ho;Han, Dong-Yeob;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.17-22
    • /
    • 2005
  • Generally, pixel-based classification, utilize the similarity of distances between the pixel values in feature space, is applied to land use mapping using satellite remote sensing data. But this method is Improper to be applied to the very high resolution satellite data (VHRS) due to complexity of the spatial structure and the variety of pixel values. In this paper, we performed the hierarchical classification of VHRS imagery by data fusion, which integrated LiDAR height and intensity information. MLC and ISODATA methods were applied to IKONOS-2 imagery with and without LiDAR data prior to the hierarchical classification, and then results was evaluated. In conclusion, the hierarchical method with LiDAR data was the superior than others in VHRS imagery and both MLC and ISODATA classification with LiDAR data were better than without.

  • PDF

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

EXTRACTING BASE DATA FOR FLOOD ANALYSIS USING HIGH RESOLUTION SATELLITE IMAGERY

  • Sohn, Hong-Gyoo;Kim, Jin-Woo;Lee, Jung-Bin;Song, Yeong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.426-429
    • /
    • 2006
  • Flood caused by Typhoon and severe rain during summer is the most destructive natural disasters in Korea. Almost every year flood has resulted in a big lost of national infrastructure and loss of civilian lives. It usually takes time and great efforts to estimate the flood-related damages. Government also has pursued proper standard and tool for using state-of-art technologies. High resolution satellite imagery is one of the most promising sources of ground truth information since it provides detailed and current ground information such as building, road, and bare ground. Once high resolution imagery is utilized, it can greatly reduce the amount of field work and cost for flood related damage assessment. The classification of high resolution image is pre-required step to be utilized for the damage assessment. The classified image combined with additional data such as DEM and DSM can help to estimate the flooded areas per each classified land use. This paper applied object-oriented classification scheme to interpret an image not based in a single pixel but in meaningful image objects and their mutual relations. When comparing it with other classification algorithms, object-oriented classification was very effective and accurate. In this paper, IKONOS image is used, but similar level of high resolution Korean KOMPSAT series can be investigated once they are available.

  • PDF

Comparison of the Estimated Result of Ecosystem Service Value Using Pixel-based and Object-based Analysis (화소 및 객체기반 분석기법을 활용한 생태계서비스 가치 추정 결과 비교)

  • Moon, Jiyoon;Kim, Youn-soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1187-1196
    • /
    • 2017
  • Despite the continuing effort to estimate the value of function and services of ecosystem, most of the researches has used low and medium resolution satellite imagery such as MODIS or Landsat. It means that the researches to measure the ecosystem service value using VHR (Very High Resolution) satellite imagery have not been performed much, while the source of available VHR imagery is increasing. Thus, the aim of this study is to estimate and compare the result of ecosystem service value over Sejong city, S. Korea, which is one of the rapidly changed city, through the pixel-based and object-based classification analysis using VHR KOMPSAT-3 images, for more specific and precise information. In the result of the classification, forest and grassland were underestimated while agriculture and urban were overestimated in the pixel-based result compared to the object-based result. Furthermore, bare soil area was presented contrasting result that was increased in the pixel-based result, however, decreased in the object-based result. Using those results, ecosystem service values were estimated. The annual ecosystem service values in 2014 were $8.18 million USD(pixel-based) and $8.63 million USD(object-based), however, decreased to $7.80 million USD(pixel-based) and $8.62 million USD(object-based) in 2016. It is expected to use those results as a preliminary data when to make sustainable development plan and policy to improve the quality of life in the local level.

Semi-Automated Extraction of Geographic Information using KOMPSAT 2 : Analyzing Image Fusion Methods and Geographic Objected-Based Image Analysis (다목적 실용위성 2호 고해상도 영상을 이용한 지리 정보 추출 기법 - 영상융합과 지리객체 기반 분석을 중심으로 -)

  • Yang, Byung-Yun;Hwang, Chul-Sue
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.282-296
    • /
    • 2012
  • This study compared effects of spatial resolution ratio in image fusion by Korea Multi-Purpose SATellite 2 (KOMPSAT II), also known as Arirang-2. Image fusion techniques, also called pansharpening, are required to obtain color imagery with high spatial resolution imagery using panchromatic and multi-spectral images. The higher quality satellite images generated by an image fusion technique enable interpreters to produce better application results. Thus, image fusions categorized in 3 domains were applied to find out significantly improved fused images using KOMPSAT 2. In addition, all fused images were evaluated to satisfy both spectral and spatial quality to investigate an optimum fused image. Additionally, this research compared Pixel-Based Image Analysis (PBIA) with the GEOgraphic Object-Based Image Analysis (GEOBIA) to make better classification results. Specifically, a roof top of building was extracted by both image analysis approaches and was finally evaluated to obtain the best accurate result. This research, therefore, provides the effective use for very high resolution satellite imagery with image interpreter to be used for many applications such as coastal area, urban and regional planning.

  • PDF

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.