• Title/Summary/Keyword: HIF1A

Search Result 173, Processing Time 0.03 seconds

Hypoxia-induced Angiogenesis during Carcinogenesis

  • Choe, Gyu-Sil;Bae, Mun-Gyeong;Jeong, Ju-Won;Mun, Hyo-Eun;Kim, Gyu-Won
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.120-127
    • /
    • 2003
  • The formation of new blood vessels, angiogenesis, is an essential process during development and disease. Angiogenesis is well known as a crucial step in tumor growth and progression. Angiogenesis is induced by hypoxic conditions and regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of the major HIF-1 target gene, vascular endothelial cell growth factor (VEGF). In this review, a brief overview of the mechanism of angiogenesis is discussed, focusing on the regulatory processes of the HIF-1 transcription factor. HIF-1 consists of a constitutively expressed HIF-1 beta(HIF-1β) subunit and an oxygen-regulated HIF-1 alpha(HIF-1α) subunit. The stability and activity of HIF-1α are regulated by the interaction with various proteins, such as pVHL, p53, and p300/CBP as well as by post-translational modifications, hydroxylation, acetylation, and phosphorylation. It was recently reported that HIF-1α binds a co-activator of the AP-1 transciption factor, Jab-1, which inhibits the p53-dependent degradation of HIF-1 and enhances the transcriptional activity of HIF-1 and the subsequent VEGF expression under hypoxic conditions. ARD1 acetylates HIF-1α and stimulates pVHL-mediated ubiquitination of HIF-1α. With a growing knowledge of the molecular mechanisms in this field, novel strategies to prevent tumor angiogenesis can be developed, and form these, new anticancer therapies may arise.

Expression of Hypoxia-inducible Factor-1 $\alpha$ in Esophageal Squamous Cell Carcinoma: Relationship to Prognosis and Tumor Biomarkers (식도 편평세포암에시 Hypoxia-inducible Factor-1 $\alpha$의 발현: 예후와 종양표지자와의 상관성)

  • 양일종;김종인;이해영;천봉권;조성래
    • Journal of Chest Surgery
    • /
    • v.37 no.8
    • /
    • pp.691-701
    • /
    • 2004
  • Background: Tissue hypoxia is a characteristic of many human malignant neoplasms, and hypoxia inducible factor-1 (HIF-1) plays a pivotal role in essential adaptive response to hypoxia, and activates a signal pathway for the expression of the hypoxia-regulated genes, resulting in increased oxygen delivery or facilitating metabolic adaptation to hypoxia. Increased level of HIF-1 a has been reported in many human malignancies, but in esophageal squamous cell carcinoma, the influence of HIF-1 a on tumor biology, including neovascularization, is not still defined. Material and Method: The influence of HIF-1 a expression on angiogenic factors, correlation between the tumor proliferation and HIF-1 a expression, interaction of HIF-1 a expression and p53, and correlation between HIF-1 a expression and clinicopathological prognostic parameters were investigated, using immunohistochemical stains for HIF-1 a, VEGF, CD34, p53, and Ki-67 on 77 cases of resected esophageal squamous cell carcinoma. Result: HIF-1 a expression in cancer cells was found in 33 of 77 esophageal squamous cell carcinoma cases. The 33 cases (42.9%) showed positive stain for HIF-1 a. High HIF-1 a expression was significantly associated with several pathological parameters, such as histologic grade (p=0.032), pathological TMN stage (p=0.002), the depth of tumor invasion (p=0.022), regional lymph node metastasis (p=0.002), distant metastasis (p=0.049), and lymphatic invasion (p=0.004). High HIF-1 a expression had significant VEGF immunoreactivity (p=0.008) and Ki-67 labeling index (p<0.001), but was not correlated with microvascular density within tumors (p=0.088). The high HIF-1 a expression was correlated with aberrant p53 accumulation with a marginal significance (p=0.056). The overall 5-year survival rate was 34.9%. The survival rate of patients with a high HIF-1 a expression was worse than that of patients with low-expression tumors (log-rank test, p=0.0001). High HIF-1 a expression was independent unfavorable factors although statistical significance is marginal in multivariate analysis. Conclusion: It is suggested that (1) high HIF-1 a expression in esophageal squamous cell carcinoma is associated with tumor hypoxia, or with genetic alteration in early carcinogenesis and progressive stages, (2) high HIF-1 a expression may be associated with intratumoral neovascularization through HIF-VEGF pathway, and (3) high HIF-1 a expression is associated with poor prognosis in patients with esophageal squamous cell carcinoma and may playa role as biomarker for regional lymph node metastasis.

Determination of HIF-1α degradation pathways via modulation of the propionyl mark

  • Kwanyoung Jeong;Jinmi Choi;Ahrum Choi;Joohee Shim;Young Ah Kim;Changseok Oh;Hong-Duk Youn;Eun-Jung Cho
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.252-257
    • /
    • 2023
  • The hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxic stress under physiological and pathological conditions. HIF-1α protein stability is tightly regulated by the ubiquitin-proteasome system (UPS) and autophagy in normoxia, hypoxia, and the tumor environment to mediate the hypoxic response. However, the mechanisms of how the UPS and autophagy interplay for HIF-1α proteostasis remain unclear. Here, we found a HIF-1α species propionylated at lysine (K) 709 by p300/CREB binding protein (CBP). HIF-1α stability and the choice of degradation pathway were affected by HIF-1α propionylation. K709-propionylation prevented HIF-1α from degradation through the UPS, while activated chaperon-mediated autophagy (CMA) induced the degradation of propionylated and nonpropionylated HIF-1α. CMA contributed to HIF-1α degradation in both normoxia and hypoxia. Furthermore, the pan-cancer analysis showed that CMA had a significant positive correlation with the hypoxic signatures, whereas SIRT1, responsible for K709-depropionylation correlated negatively with them. Altogether, our results revealed a novel mechanism of HIF-1α distribution into two different degradation pathways.

Expression of Hypoxia-inducible Factor-$1{\alpha}$ in Non-small Cell Lung Cancer: Relationship to Prognosis and Tumor Biomarkers (비소세포 폐암에서 HIF-$1{\alpha}$의 발현: 예후 및 종양표지자와의 관련성)

  • Cho, Sung-Rae;Byun, Joung-Hun;Kim, Jong-In;Lee, Bong-Geun;Chun, Bong-Kwon
    • Journal of Chest Surgery
    • /
    • v.39 no.11 s.268
    • /
    • pp.828-837
    • /
    • 2006
  • Background: Tissue hypoxia is characteristic of many human malignant neoplasm, and hypoxia inducible factor-1(HIF-1) plays a pivotal role in essential adaptive response to hypoxia, and activates a signal pathway for the expression of the hypoxia-regulated genes, resulting in increasing $O_2$ delivery or facilitating metabolic adaptation to hypoxia. Increased level of HIF-$1{\alpha}$ has been reported in many human malignancies, but in non-small cell lung carcinoma the influence of HIF-$1{\alpha}$ on tumor biology, including neovascularization, is not still defined. In present study the relationship of HIF-$1{\alpha}$ expression on angiogenetic factors, relationship between the tumor proliferation and HIF-$1{\alpha}$ expression, interaction of HIF-$1{\alpha}$ expression and p53, and relationship between HIF-$1{\alpha}$ expression and clinico-pathological prognostic parameters were investigated. Material and Method: Archival tissue blocks recruited in this study were retrieved from fifty-nine patients with primary non-small cell lung carcinoma, who underwent pneumonectomy or lobectomy from 1997 to 1999. HIF-$1{\alpha}$, VEGF(vascular endothelial growth factor), and p53 protein expression and Ki-67 labeling index in tumor tissues were evaluated, using a standard avidin-biotin-peroxidase complex(ABC) immunohistochemistry. Relationship between the HIF-$1{\alpha}$ expression and VEGF, p53 overexpression and correlation between the HIF-$1{\alpha}$ expresseion and Ki-67 index were analyzed. Clinico-pathologic prognostic parameters were also analyzed. Result: HIF-$1{\alpha}$ expression in cancer cells was found in 24 of 59 cases of non-small cell lung carcinoma(40.7%). High HIF-$1{\alpha}$ expression was significantly associated with several pathological parameters, such as pathological TMN stage(p=0.004), pT stage(p=0.020), pN stage (p=0.029), and lymphovascular invasion(p=0.019). High HIF-$1{\alpha}$ expression was also significantly associated with VEGF immunoreactivity(p<0.001), and aberrant p53 expression(p=0.040). but was marginally associated with Ki-67 labeling index(p=0.092). The overall 5-year survival rate was 42.3%. The survival curve of patients with a high HIF-$1{\alpha}$ expression was worse than that of patients with low-expression(p=0.002). High HIF-$1{\alpha}$ expression was independent unfavorable factors with a marginal significance in multivariate analysis performed by Cox regression. Conclusion: It is suggested that high HIF-$1{\alpha}$ expression may be associated with intratumoral neovascularization possibly through HIF-VEGF pathway, and high HIF-$1{\alpha}$ expression could be associated with lymph node metastasis and post operative poor prognosis in patients with non-small cell lung carcinoma.

N'-[(2-Hydroxy-1-naphthyl)methylene]arylhydrazides as Potent HIF-2α Inhibitors (N'-[(2-Hydroxy-1-naphthyl)methylene]arylhydrazide 화합물의 HIF-2α 저해 활성)

  • Lee, Hyosung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.161-166
    • /
    • 2022
  • HIF-2α is a transcription factor activated mainly in hypoxic condition known to play crucial roles in a wide variety of pathophysiological events including cancer, metabolic syndrome, arthritis etc. In this context, a number of N'-aryl isonicotinolyhydrazides, in which known pharmacophores are included, have been selected from commercial chemical library and tested for the inhibitory activities targeting HIF-2α in cultured HTB94 cell. HRE-luciferase and HIF-2α were introduced into the cell by transfection and adenoviri infection, respectively and the reporter gene assay discovered the potency of 2-hydroxy-1-naphthyl structure. Accordingly, the scaffold has been adjusted based on this structure and subjected to anti-HIF-2α activity test, identifying 2 compounds as HIF-2α inhibitors. The activities were confirmed by false positive test. This study has been performed via the convergence of biology and chemistry and the results may be useful for discovering novel inhibitors and HIF-2α biology studies, and contribute to the development of therapeutic agents.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.

Regulation of HIF-1α stability by lysine methylation

  • Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.245-246
    • /
    • 2016
  • The level and activity of critical regulatory proteins in cells are tightly controlled by several tiers of post-translational modifications. HIF-1α is maintained at low levels under normoxia conditions by the collaboration between PHD proteins and the VHL-containing E3 ubiquitin ligase complex. We recently identified a new physiologically relevant mechanism that regulates HIF-1α stability in the nucleus in response to cellular oxygen levels. This mechanism is based on the collaboration between the SET7/9 methyltransferase and the LSD1 demethylase. SET7/9 adds a methyl group to HIF-1α, which triggers degradation of the protein by the ubiquitin-proteasome system, whereas LSD1 removes the methyl group, leading to stabilization of HIF-1α under hypoxia conditions. In cells from knock-in mice with a mutation preventing HIF-1α methylation (Hif1αKA/KA), HIF-1α levels were increased in both normoxic and hypoxic conditions. Hif1αKA/KA knock-in mice displayed increased hematological parameters, such as red blood cell count and hemoglobin concentration. They also displayed pathological phenotypes; retinal and tumor-associated angiogenesis as well as tumor growth were increased in Hif1αKA/KA knock-in mice. Certain human cancer cells exhibit mutations that cause defects in HIF-1α methylation. In summary, this newly identified methylation-based regulation of HIF-1α stability constitutes another layer of regulation that is independent of previously identified mechanisms.

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses

  • Hong, Sun Woo;Yoo, Jae Wook;Kang, Hye Suk;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2009
  • Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1α

  • Choi, Su-Mi;Park, Hyun-Sung
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.737-742
    • /
    • 2009
  • Hypoxia-inducible factor-$1{\alpha}/{\beta}$ (HIF-$1{\alpha}/{\beta}$) is a heterodimeric transcriptional activator that mediates gene expression in response to hypoxia. HIF-$1{\alpha}$ has been noted as an effective therapeutic target for ischemic diseases such as myocardiac infarction, stroke and cancer. By using a yeast two-hybrid system and a random peptide library, we found a 16-mer peptide named F29 that directly interacts with the bHLH-PAS domain of HIF-$1{\alpha}$. We found that F29 facilitates the interaction of the HIF-$1{\alpha/\beta}$ heterodimer with its target DNA sequence, hypoxia-responsive element (HRE). The transient transfection of an F29-expressing plasmid increases the expression of both an HRE-driven luciferase gene and the endogenous HIF-1 target gene, vascular endothelial growth factor (VEGF). Taken together, we conclude that F29 increases the DNA-binding ability of HIF-$1{\alpha}$, leading to increased expression of its target gene VEGF. Our results suggest that F29 can be a lead compound that directly targets HIF-$1{\alpha}$ and increases its activity.