• Title/Summary/Keyword: HFC-22

Search Result 55, Processing Time 0.021 seconds

Performance analysis of a hermetic reciprocating compressor using the alternative refrigerants, HFC134a and HC600a (대체냉매(HFC134a, HC600a)용 밀폐형 왕복동 압축기의 성능해석에 관한 연구)

  • Kim, Jeong-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.966-979
    • /
    • 1998
  • Thermodynamic and dynamic analysis has been conducted to investigate performance variations induced by substitution of alternative refrigerants, HFC134a or HC600a for CFC12 in hermetic reciprocating compressors. For the thermodynamic analysis, mass and energy conservation laws are applied to the cylinder volume and Helmholtz resonator modeling method is adopted to describe gas pulsations at suction and discharge system. The modeling of the dynamics of the compressor mechanism has been performed with lumped mass method to analyse the bearing loads and friction losses at each bearing. To verify the correctness of this analysis, results of the performance simulation have been compared to those of calorimetric measurrements of compressor operating with CFC12. Analysis of the various losses, noise and reliability as well as performance has been conducted to present the design guideline for the compressor development with alternative refrigerants. It is found that compressors with alternative refrigerants, HFC 134a or HC600a give better COPs than those with CFC12 under the same operating conditions and especially, compressors with HC600a show better reliability and noise characteristics also.

Fugitive Emission Characteristics of HFC-134a from Waste Kimchi Refrigerator (폐김치냉장고에서의 HFC-134a 탈루배출 특성에 대한 연구)

  • Kim, Eui-Kun;Kim, Seungdo;Lee, Young Phyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • In 1995 Kimchi refrigerator was developed at first, and has used HFC-134a as refrigerant. Kimchi refrigerator has been made 1,044,694 on the basis of 2010, disposed about 160,000 per year. Although mobile air conditioning, commercial refrigerator, general refrigerator is regarded as a major source of HFC-134a, little information is available for its emission characteristics of HFC-134a. This paper addresses the fugitive emission factors of Kimchi refrigerator at use-phase and disposal-phase. The residual quantities of Korean-made fifty three waste Kimchi refrigerators were weighed using a commercial recover of refrigerants to determine the emission factors at the disposal-phase. On the other hand, the emission factors at use-phase were estimated from the residual quantities and operating times. The average residual rate of forty three scarp Kimchi refrigerators is determined to be $74.6{\pm}5.2%$. The emission factor at the use-phase is estimated to be $3.5{\pm}0.8%/yr$ as a result of using average age of 11.7 years and the average residual rate determined here. The emission factor at the disposal-phase is determined to be 31.3% after adopting 58% of the recycling rate of refrigerant reported by Recycling Center. We estimate 3.1 g/yr for the average emission quantity of HFC-134a per operating refrigerator, while 22.5 g for that per waste Kimchi refrigerator. Since the chemical compositions of refrigerant of waste Kimchi refrigerator were the same as those of new refrigerant, it is expected that the HFC-134a recovered from waste Kimchi refrigerator can be reused for refrigerant.

A Study of External Condensation Heat Transfer of Flammable Refrigerants (가연성 냉매의 외부 응축 열전달에 관한 연구)

  • 배동수;하종철;유길상;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.522-529
    • /
    • 2004
  • In this study, external condensation heat transfer coefficients (HTCs) of flammable refrigerants of propylene, propane, isobutane, butane, DME, and HFC32 were measured on a horizontal plain tube, 26 fpi low fin tube, and Turbo-C tube. All data were taken at the temperature of 39$^{\circ}C$ with a wall subcooling of 3∼8$^{\circ}C$. Test results showed a typical trend that condensation HTCs of flammable refrigerants decrease with increasing wall subcooling. HFC32 had the highest HTCs among the tested refrigerants showing 44% higher HTCs than those of HCFC22 while DME showed 28% higher HTCs than those of HCFC22. HTCs of propylene and butane were similar to those of HCFC22 while those of propane and isobutane were similar to those of HFC134a. Based upon the tested data, Nusselt's equation is modified to predict the plain tube data within a deviation of 3%. For 26 fpi low fin tube, Beatty and Katz equation predicted the data within a deviation of 7.3% for all flammable refrigerants tested. The heat transfer enhancement factors for the 26 fpi low fin and Turbo-C tubes were 4.6∼5.7 and 4.7∼6.9 respectively for the refrigerants tested indicating that the performance of Turbo-C tube is the best among the tubes tested.

Performance Evaluation of R435A on Refrigeration System of Water Purifiers (R435A를 적용한 정수기 냉동시스템의 성능평가)

  • Lee, Yo-Han;Kang, Dong-Gyu;Choi, Hyun-Joo;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • In this study, thermodynamic performance of R435A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 20%R152a/80%RE170 using actual domestic water purifiers. This mixture is numbered and listed as R435A by ASHRAE recently. Test results show that the system performance with R435A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R435A is 11.8% lower than that of HFC134a. The compressor discharge temperature of R435A $8^{\circ}C$ lower than that of HFC134a at the optimum charge. Overall, R435A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Performance of R430A on Refrigeration System of Domestic Water Purifiers (대체냉매 R430A를 적용한 정수기 냉동시스템의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Kim, Kyoung-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • In this study, thermodynamic performance of R430A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 76%R152a124% R600a using actual domestic water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance with R430A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC 134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a at the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Performance of HCFC22 Alternatives R1270, R290, R1270/R290, R290/HFC152a, R1270/R290/RE170 Refrigerants for Air-conditioning and Heat Pump Applications (HCFC22 대체 R290, R1270 및 R1270/R290, R290/HFC152a, R1270/R290/RE170 혼합냉매의 공기조화기와 열펌프 작동범위에서의 성능 평가)

  • Hwang Ji-Hwan;Baek In-Cheol;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.312-319
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 7 mixtures was measured in an attempt to substitute HCFC22 used in air-conditioners and heat pumps. The mixtures were composed of R1270 (propylene), R290 (propane), HFC152a, and RE170 (Dimethyl ether, DME). The pure and mixed refrigerants tested have GWPs of $3{\sim}58$ as compared to that of $CO_2$ and the mixtures are all near-azeotropic showing the gliding temperature difference (GTD) of less than $0.6^{\circ}C$. Thermodynamic cycle analysis was carried out to determine the optimum compositions and actual tests were performed in a laboratory heat pump test bench at the evaporation and condensation temperatures of 7.5 and $45.1^{\circ}C$ respectively. Test results show that the coefficient of performance (COP) of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed 11.5% reduction in capacity, most of the fluids tested had the similar capacity to that of HCFC22. Compressor discharge temperatures were reduced by $11{\sim}17^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 55% as compared to HCFC22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for. residential air-conditioning and heat pumping application.

Condensation Heat Transfer Coefficients of Flammable Refrigerants on Various Enhanced Tubes

  • Park Ki-Jung;Jung Dongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1957-1963
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (RI270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of $39^{\circ}C$ on a 1023 fpm low fin and Turbo-C tubes. All data were taken under the heat flux of $32\~116\;and\;42\~142kW/m^2$ for the low fin and Turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to $30\%$ higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of $7.3\%$. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate.

The Performance Analysis of the Fin-Tube Heat Exchanger Using CFC Alternative Refrigerant (CFC 대체냉매를 사용한 핀-관 열교환기의 성능해석)

  • 박희용;박경우;차재병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2358-2372
    • /
    • 1993
  • In this study, the computer modeling for prediction of the performance of fin-tube heat exchanger using alternative refrigerant, HFC-134a was developed and the computer program for calculating the various properties of HFC-134a and the existing refrigerant CFC-12 and HCFC-22 was made. The heat exchanger modeling is based on a tube-by-tube approach, which is capable of analysis for the complex coil array. Performance of each tube is analyzed separately by considering the cross-flow heat transfer with external airstream and the appropriate heat and mass transfer relationships. A performance comparison according to the different refrigerants is provided using this developed model. As the result of this study, total heat transfer rate of evaporator and condenser using HFC-134a were found higher than that of using CFC-12 for the same operating conditions. When the mass flow rate of HFC-134a was less than CFC-12 about 18. 16%, the cooling capacities of evaporator were found to be the same.