• Title/Summary/Keyword: HEAT SINK

Search Result 561, Processing Time 0.024 seconds

Thermal Performance of PV Cells Exposed to Irradiation by a Parabolic Trough Concentrator (PTC형 태양열 집열기로 조사되는 PV cell의 열적 성능)

  • Hwang, Seon Yeob;Kang, Tae Gon;Boo, Joon Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.68-68
    • /
    • 2011
  • 본 연구에서는 PV cell이 직달 일사에 노출되는 경우와 집광된 태양광에 조사되는 경우의 성능을 비교하는 한편 집광기의 형태에 따른 열적 성능을 검토하고자 하였다. PV cell은 본질적으로 반도체의 특성을 가지므로 작동온도의 상승에 따라 성능이 저하된다는 사실이 알려져 있으며, 태양조사의 강도 및 밀도 등 특성에 따라서도 성능의 변화를 예상할 수 있다. 그러나 이러한 성능변화에 관련된 인자들과 그 영향의 크기에 대한 정량적인 기술자료가 부족하므로 설치와 이용에 한계가 있는 것이 현실이다. 인공태양 장치(solar simulator)를 이용하여 0.7에서 1.2 sun 범위의 태양 조사 환경에서 결정질 실리콘계 PV cell과 집광형 PV cell의 성능을 검토하였다. 집광에 사용한 PTC는 집광면적의 폭이 500 mm이며, 집광 조사면적이 최소 10 mm인 경우 이론적 최대 집광비가 50이었다. PTC의 축방향으로는 균일한 태양조사가 있게된다는 것을 가정하여 모델의 길이는 간편한 실험을 위해 150에서 500 mm의 범위에서 제작하였다. 수평으로 놓인 PTC의 상부 초점 위치로부터 집광면이 아래 쪽에 위치할수록 집광 조사 면적이 증가하므로 PV cell의 크기에 따라 PTC 초점의 위치로부터 거리를 결정하였다. 한편, PTC 자체의 성능도 촛점거리와 집광면 폭의 비에 따라 달라질 수 있다는 가정 하에, 포물면의 최저 위치로부터 촛점거리는 각각 300, 400 및 500 mm가 되도록 세가지 형태를 제작하여 사용하였다. 동일한 형태의 PTC에서 PV cell의 동일한 설치 위치에서도 최고 $110^{\circ}C$ 범위의 PV cell의 작동 (표면) 온도에 따른 성능의 차이를 관찰하기 위해 셀의 후면을 냉각시키는 경우와 그렇지 않은 경우를 비교하였다. PV cell의 표면 온도 측정을 위해서, 후면의 온도와 같이 광선 차단 효과의 우려가 없는 경우에는 열전대를 설치하였으며, 셀의 전면 온도 측정을 위해서는 비접촉식 적외선 온도계를 사용하였다. 냉각 방법으로는 공기를 이용한 자연대류와 액체를 사용하는 강제대류의 경우를 고려하였으며, 필요에 따라 적절히 설계된 히트싱크를 설치하여 비교 실험을 진행하였다. 강제대류 냉각의 경우는 항온조를 사용하여 순환하는 냉각수의 유량과 공급온도를 변화시킴으로써 PV cell의 작동온도를 조절하고, 이에 따른 발전 성능의 변화를 관찰하였다. 본 연구에서 도출한 실험 및 분석 결과는 PV cell의 설치 환경과 작동온도의 변화에 따라 그 성능 변화를 예측할 수 있는 기술적 자료를 제공함으로써 에너지 이용의 합리화를 도모하는데 기여할 수 있을 것이다.

  • PDF

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

Research on the Relationship between Thermoelectric Module with Defects and Thermal Performances (열전소자 내부 층간 결함과 열성능 관계에 관한 연구)

  • Choi, Choul-Jun;Gao, Jia-Chen;Kim, Jae-Yeol;Jung, Yoon-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • From the first application of a thermoelectric module to nowtoday, it has been more than half a century. The application of a thermoelectric module is becoming more and more widely accepted since, people's requirement rely more and more on the efficiency of thermoelectric modules and their reliability become higher and higher. So people pay more and more attention to the thermoelectric module. In Around the world, the more research for into improving the efficiency of thermoelectric modules is focused on the current materials. at present. However, the research of into available materials had has some limitations, and the research of materials had reached a bottleneckthere are limits to current applications. On the other hand, from the production process, if we assembled by materials withoutmodules without any damages and achieve the ideal state of a joint, we can make the a product to maximize performance and have a longer service life. SoTherefore, in this study we will prove the relationship between the any defects inside and the efficiency of a thermoelectric module to improve the quality management and performance of modern thermoelectric modules at present.

Experimental Simulation of Local External Forcing of the Contained Rotating Flow (회전반 유체실험에서 국지적 외력의 실험적 모의)

  • Yi, Chang-Won;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2000
  • Simulation of local external forcing and its response in the rotation table experiment has been investigated. Spatially-uniform external forcings have been applied in many experimental studies, however, based on the fact that the north-south distribution of the wind-stress curl and the existence of local maximum of the sea surface heat loss in the northern part of the East Sea, new method of combined effects of local forcings has been employed in separate experiments. Carefully designed local source or sink at the bottom of the cylindrical container can produce horizontal pressure gradient within the Ekman layer, and consequently the interior also attains the same pressure gradient that produces geostrophic interior circulation. In order to keep free surface during the local-surface cooling, a side-wall cooling method is suggested. For the various type of local forcing including the effects local cooling and the periodic change of local wind-stress curl, western-boundary flow in terms of its strength, position of separation from the boundary have been observed.

  • PDF

Chloride Penetration into Concrete in Tidal Zone by Diffusion-Convection Analysis (확산과 이송을 고려한 콘크리트의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jung, Hyung-Mok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.607-615
    • /
    • 2009
  • Analysis of chloride penetration into concrete is performed considering the repeated wetting and drying conditions of tidal zone, by means of the developed finite element program which enables the diffusion-convection analysis to be conducted. Heat conduction and moisture diffusion are also included in the finite element analysis program in order that their effects to chloride penetration may be considered. For the efficiency of calculation, the analyses of temperature, relative humidity and free chloride concentration are conducted successively in that order, by treating the convection of chloride due to moisture diffusion as an source or sink term. By comparing the analysis result from finite element analysis, where main variable is a wetting and drying period, with the chloride profiles from ACI Life-365 method, it is shown that the Life-365 method gives an accurate result for the submerged zone but does not consider the differences of wetting and drying period. To obtain an accurate chloride profile in the tidal zone, it is confirmed that the diffusion-convection finite element analysis should be applied.

COB, COH Package LED Module Thermal Analysis Simulation (COB, COH Package LED Module 열 해석 시뮬레이션)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5117-5122
    • /
    • 2011
  • In this paper, thermal analysis simulation program by taking advantage of COMSOL Multiphysics, LED Module for the production of the most preferred package type, omitting the COH Type COB Type and board simulation of the thermal analysis is in progress. LED Module that passes through the Heat-sink of the simulation results, depending on the location of the COB Type Max. Approximately $78^{\circ}C$ ~ Min. Approximately $62^{\circ}C$, COH Type the Max. Approximately $88^{\circ}C$ ~ Min. Approximately $67^{\circ}C$ has been confirmed that the temperature stability. Compared with COB Type Max. AIthough temperature difference is about $10^{\circ}C$, Min. At a temperature of about $5^{\circ}C$ confirmed to be enough to reduce the gap, LED Point confirming the results of the temperature curves for COB Type Max. Approximately $100^{\circ}C$ ~ Min. Approximately $77^{\circ}C$, COH Type the Max. Approximately $100^{\circ}C$ ~ Min. Approximately $86^{\circ}C$ temperature stability was confirmed that, COB Type COH Type, compared to approximately $10^{\circ}C$ temperature was higher.

A Basic Study on the District Cooling System of LNG Cold Thermal Energy (LNG 냉열 에너지의 지역 냉방 시스템에 관한 기반 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.36-43
    • /
    • 2003
  • This paper provides the possibility of the district cooling system by using a LNG cold thermal energy. A liquefied natural gas provides a plenty of cooling source energy during a gasification of a liquefied natural gas. In recent, an ice thermal storage system is used for cooling a building, and a deep water source cooling system has been introduced as a district cooling system in which is used to cool the office towers and other large buildings in old and new downtown. LNG cooling energy refers to the reuse of a large body of naturally cold fluids as a heat sink for process and comfort space cooling as an alternative of conventional, refrigerant based cooling systems. Coincident with significant clean energy and operating cost savings, LNG cold energy cooling system offers radical reductions in air-borne pollutants and the release of environmentally harmful refrigerants in comparison to the conventional air-conditioning system. This study provides useful information on the basic design concepts, environmental considerations and performance related to the application of LNG cold thermal energy.

  • PDF

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Analysis of Failure and Electrical Fire for Bolt Induction Heating System Using FTA (FTA를 이용한 볼트 유도가열시스템의 고장 및 전기화재 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Eom, Haneol;Kang, Moon-Soo;Jeong, Cheon-Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • This paper presents a safety assessment method for FTA-based induction heating systems; the failures and causes of electrical fire are first analyzed for each part and module qualitatively, and methods to manage high probabilities of failure and electrical fire are considered, thereby improving the reliability of the induction heating system. The cumulative importance value (ACC) of the minimal cut set is drawn by setting failure as the top event, and STACK and SMPS are observed to account for about 70% of the induction heating system failures. Thus, intensively managing the basic events contained in the minimal cut set of failures for STACK and SMPS is expected to provide effective and stable operation of the induction heating system. When electrical fire is set as the top event, the STACK percentage is 90%. Accordingly, the current IGBT is changed to a FET to increase the applied voltage and prevent induction heating system failure, and a heat sink plane is installed to prevent FET heating caused by switching, thereby preventing an electrical fire. By classifying the parts and modules of the induction heating system in detail and by applying FTA based on actual failure rates and relevant data, more practical and reasonable results may be expected. Hence, continuous research must be conducted to ensure safety when using induction heating systems.