• Title/Summary/Keyword: HDTMA

Search Result 30, Processing Time 0.02 seconds

Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies

  • Thanhmingliana, Thanhmingliana;Lalhriatpuia, C.;Tiwari, Diwakar;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.203-210
    • /
    • 2016
  • Hybrid materials were obtained modifying the bentonite (BC) and local clay (LC) using hexadecyltrimethylammonium bromide (HDTMA) or the clay were pillared with aluminum followed by modification with HDTMA. The materials were characterized by the SEM, FT-IR and XRD analytical tools. The batch reactor data implied that the uptake of $17{\beta}$-estradiol (E2) by the hybrid materials showed very high uptake at the neutral pH region. However, at higher and lower pH conditions, slightly less uptake of E2 was occurred. The uptake of E2 was insignificantly affected changing the sorptive concentration from 1.0 to 10.0 mg/L and the background electrolyte (NaCl) concentrations from 0.0001 to 0.1 mol/L. Moreover, the sorption of E2 by these hybrid materials was fairly efficient since within 30 mins of contact time, an apparent equilibrium between solid and solution was achieved, and the data was best fitted to the PSO (pseudo-second order) and FL-PSO (Fractal-like-pseudo second order) kinetic models compared to the PFO (pseudo-first order) model. The fixed-bed column results showed that relatively high breakthrough volume was obtained for the attenuation of E2 using these hybrid materials, and the loading capacity of E2 was estimated to be 75.984, 63.757, 58.965 and 49.746 mg/g for the solids BCH, BCAH, LCH and LCAH, respectively.

Single and Binary Competitive Sorption of Phenanthrene and Pyrene in Natural and Synthetic Sorbents

  • Masud, Md Abdullah Al;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.11-21
    • /
    • 2022
  • Sorption of phenanthrene (PHE) and pyrene (PYR) in several sorbents, i.e., natural soil, BionSoil®, Pahokee peat, vermicompost and Devonian Ohio Shale and a surfactant (hexadecyltrimethyl ammonium chloride)-modified montmorillonite (HDTMA-M) were investigated. Pyrene exhibited higher sorption tendency than phenanthrene, as predicted by its higher octanol to water partition coefficient (Kow). Several sorption models: linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. Linear isotherms were observed for natural soil, BionSoil®, Pahokee peat, vermicompost, while nonlinear Freundlich isotherms fitted for Ohio shale and HDTMA-M. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. In the binary competitive sorption of phenanthrene and pyrene in natural soil, competition between the solutes caused reduction in the sorption of each solute compared with that in the single-solute system. The ideal adsorbed solution theory (IAST) coupled with the single-solute Freundlich model was not successful in describing the binary competitive sorption equilibria. This was due to the inherent nature of linear sorption of phenanthrene and pyrene in natural soil. The result indicates that the applicability of IAST for the prediction of binary competitive sorption is limited when the sorption isotherms are inherently linear.

Removal of NAPL TCE using Cement/Slag contained Fe(II) (Fe(II)로 개질된 시멘트/슬래그를 이용한 NAPL TCE의 제거)

  • Lee, Seung-Hyoung;Park, Jung-Hyun;Choi, Won-Ho;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.97-103
    • /
    • 2009
  • The decompostion characteristics of NAPL TCE in cement/slag/Fe(II) system were studied with various TCE concentration and amounts of binders (cement/slag) For analyses of the TCE degradation by cement/slag/Fe(II), TCE solution injected using gas-tight syringe after TCE solution dissolved a methanol. Initial concentrations of TCE are 0.42 mM, NAPL condition 11.7 mM and saturated condition 16.8 mM respectively. The result showed that the cases of 8.4 mM and 4.2 mM are decreased 88% of total TCE concentration within 18 days. NAPL condition 11.7 mM was decreased 84% within 50 days and saturated condition 16.8 mM was decreased 60% of total TCE concentration within 60 days respectively. This showed that degradations of TCE in various concentrations were in one kind reaction as pseudo-first-order. TCE was dissolved as aqueous solution before degraded. The reaction rate was increased $0.12day^{-1}$, $0.24day^{-1}$, $0.31day^{-1}$ when the mass of media 0.1, 0.2, 0.3 S/L rate was increased. TCE reaction speed is affected by cement/slag surface ares in this system. When HDTMA, experimental facter, was added, TCE decomposition rate was high despite the high concentration of NAPL. and The decompostion characteristics of NAPL TCE in cement/slag/Fe(II) system were studied by using modeling.

Effect of Metal Ion on the Bentonite Modified with Cationic Surfactant (양이온성 계면활성제를 이용한 유기 벤토나이트의 합성시 금속 이온의 첨가 영향)

  • Kim, Soo-Hong;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.677-682
    • /
    • 2006
  • Dodecyldimethylethylammonium (DDDEA), a cationic surfactant, and aluminum metal ions were used with bentonite to synthesize to synthesize an improved organo bentonite. Among three different synthesis procedure for organo bentonites, aluminium-pillared bentonite showed the highest DDDEA sorption, which indicated that aluminium-pillared organo bentonite would exhibit the highest sorption capacity for organic contaminants. Aluminium pillared organo bentonite also showed a high sorption capability for phosphorus, while it did not exhibit strong sorption for nitrate. In the meantime, more desorption was observed with aluminium-pillared organo bentonite than ordinary organo bentonites.

Adsorption of Heavy Metals on Organobentonite (유기 벤토나이트에 의한 중금속 흡착특성)

  • 유지영;최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.168-171
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify an adsorption of heavy metals. Based on preliminary experiments, optimal soil/solution ratio, a range of pH, and electrolyte were selected. Adsorption experiments of cadmium and lead were conducted to quantify an adsorption selectivity to bentonite and organobentonite. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorptions of heavy metal to organobentonite were slightly reduced relative to bentonite. This study used the principle of hard-soft-acid-base (HBAB) to interpretate an adsorption mechanism. Because of competition between cadmium and lead. adsorption of cadmium and lead was reduced in mixture of heavy metals. Adsorption selectivity.

  • PDF

Removal of Pb2+ Ions from Water by Surfactant-templated Mesoporous Silicates (계면활성제가 담지된 메조포러스 실리케이트에 의한 수중 납이온 제거)

  • Choi, Hyun Suk;Lee, Dong Gue;Cho, Guk Jin;Lee, Chae Young;Chung, Jin Suk;Yoo, Ik-keun;Shin, Eun Woo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.172-178
    • /
    • 2006
  • Mesoporous silicate materials have been used as adsorbents for the removal of heavy metals from water by introducing functional groups such as thiol and amine. In this research, it was investigated whether surfactants used as templating agents in synthetic processes can act as adsorption sites for heavy metals. Three mesoporous silicates-SBA-15, MCM-41, and HMS were synthesized using, respectively, block copolymer, hexadecyltrimethylammoniumbromide (HDTMA), and dodecyamine as surfactants. X-ray diffraction and $N_2$ gas adsorption analysis confirmed that the mesoporous silicates were well prepared and FT-IR spectra resulted in the existence of the surfactants in as-synthesized mesoporous silicates and the removal of surfactants after calcination. The interactions between $Pb^{2+}$ ions and the mesoporous silicate materials with/without surfactants were observed. In adsorption kinetic experiments, it revealed that the calcined mesoporous silicates and the surfactant-loaded SBA-15 almost had no adsorption capacity for $Pb^{2+}$ ions. In contrast, the surfactant-loaded MCM-41 and HMS showed, respectively, the adsorption capacities of 26.60 and 115.16 mg/g which were acquired through the fits of adsorption kinetic data to the pseudo second order kinetic model. The adsorption capacities were comparable to those of other mesoporous adsorbents for heavy metals.

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study

  • Tiwari, Diwakar;Jamsheera, A.;Zirlianngura, Zirlianngura;Lee, Seung Mok
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • The carbon paste electrode (CPE) was modified with the pristine bentonite and hybrid material (HDTMA-modified bentonite). The modified-CPEs are then employed as working electrode in an electrochemical detection of As(V) from aqueous solutions using the cyclic voltammetric measurements. Cyclic voltammograms revealed that As(V) showed reversible behavior onto the working electrode. The hybrid material-modified carbon paste electrode showed significantly enhanced electrochemical signal which was then utilized in the low level detection of As(V). Moreover, the studies were conducted at neutral pH conditions. The electrochemical studies were conducted with scan rates (20 to 200 mV/s) to deduce the mechanism of redox processes involved at the electrode surface. The anodic current was linearly increased, increasing the concentration of As(V) from 5.0 to $35.0{\mu}g/g$ using the hybrid material-modified electrode. This provided fairly a good calibration line for As(V) detection. The presence of varied concentrations of As(III) in the determination of total arsenic was studied. The influence of several cations and anions viz., Cu(II), Mn(II), Zn(II), Pb(II), Cd(II), Fe(III), $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$, EDTA and glycine in the detection of As(V) from aqueous solution was also studied. Further, in an attempt to simulate the real matrix analysis, the tap water sample was spiked with As(V) and subjected for As(V) detection using the modified-CPE.

The Kinetics of Montmorillonite Expansion in the Treatment with Hexadecyltrimethylammonium (HDTMA와 반응하는 몬모릴로나이트의 팽창 속도론)

  • Lee Seung Yeop;Cho Won Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.299-307
    • /
    • 2004
  • Surfactant adsorption by two montmorillonite types with different interlayer cations of Ca and Na was characterized by examining the time dependence of surfactant behavior on the clay surfaces. Surfactants with different micelle concentration were conducted in our experiment to observe a nonequilibrium activity of cationic surfactant on the clay over reaction periods ranging from 0.1 min to 11 days. As compared with Ca-montmorillonite (SAz), a more active intrusion of surfactant molecules into the interlayers was found in Na-montmorillonite (SWy). During a short 'initiation' stage, the basal spacing of SWy montmorillonite increased rapidly with logarithmic time. For SAz montmorillonite, however, the abrupt basal spacing increase occurred at the later stage of the reaction. From the result, the difference in the adsorption behavior exhibited by the two montmorillonite types partly results from their intrinsic nature, that is, inorganic cations originally existing on the clay surfaces. Additionally, the micelle concentration of surfactants affects the development of organo-montmorillonite, especially, in the intercalant formation and stabilization under nonequilibrium.