• Title/Summary/Keyword: HDR Image

Search Result 96, Processing Time 0.025 seconds

A Study for Virtual Reality 360 Video Production Workflow with HDR Using log Shooting (log 촬영과 HDR을 이용한 실사 360 영상 제작흐름 연구)

  • Kim, Chulhyun
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.63-73
    • /
    • 2018
  • These days, VR contents are created in three ways: CG based method, game engine based method, and live action shooting method. The most universal method is live action shooting. So far, most live actions are shot with action cams. Therefore, this method is different from professional image production method for movies and TV dramas. This study tries to point out the difference between professional image production method and action cam based shooting method, and proposes an alternative. The proposed method is log shooting based HDR filming and editing. As the result of test shooting and editing, the proposed method was able to obtain more color information than conventional action cam based shooting method and thereby to implement high-definition images which are hard in an action cam.

Multi-camera based Images through Feature Points Algorithm for HDR Panorama

  • Yeong, Jung-Ho
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.6-13
    • /
    • 2015
  • With the spread of various kinds of cameras such as digital cameras and DSLR and a growing interest in high-definition and high-resolution images, a method that synthesizes multiple images is being studied among various methods. High Dynamic Range (HDR) images store light exposure with even wider range of number than normal digital images. Therefore, it can store the intensity of light inherent in specific scenes expressed by light sources in real life quite accurately. This study suggests feature points synthesis algorithm to improve the performance of HDR panorama recognition method (algorithm) at recognition and coordination level through classifying the feature points for image recognition using more than one multi frames.

An Image Merging Method for Two High Dynamic Range Images of Different Exposure (노출 시간이 다른 두 HDR 영상의 융합 기법)

  • Kim, Jin-Heon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.526-534
    • /
    • 2010
  • This paper describes an algorithm which merges two HDR pictures taken under different exposure time to display on the LDR devices such as LCD or CRT. The proposed method does not generate the radiance map, but directly merges using the weights computed from the input images. The weights are firstly produced on the pixel basis, and then blended with a Gaussian function. This process prevents some possible sparkle noises caused by radical change of the weights and contributes to smooth connection between 2 image informations. The chrominance informations of the images are merged on the weighted averaging scheme using the deviations of RGB average and their differences. The algorithm is characterized by the feature that it represents well the unsaturated area of 2 original images and the connection of the image information is smooth. The proposed method uses only 2 input images and automatically tunes the whole internal process according to them, thus autonomous operation is possible when it is included in HDR cameras which use double shuttering scheme or double sensor cells.

Deep Learning-Based Lighting Estimation for Indoor and Outdoor (딥러닝기반 실내와 실외 환경에서의 광원 추출)

  • Lee, Jiwon;Seo, Kwanggyoon;Lee, Hanui;Yoo, Jung Eun;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.31-42
    • /
    • 2021
  • We propose a deep learning-based method that can estimate an appropriate lighting of both indoor and outdoor images. The method consists of two networks: Crop-to-PanoLDR network and LDR-to-HDR network. The Crop-to-PanoLDR network predicts a low dynamic range (LDR) environment map from a single partially observed normal field of view image, and the LDR-to-HDR network transforms the predicted LDR image into a high dynamic range (HDR) environment map which includes the high intensity light information. The HDR environment map generated through this process is applied when rendering virtual objects in the given image. The direction of the estimated light along with ambient light illuminating the virtual object is examined to verify the effectiveness of the proposed method. For this, the results from our method are compared with those from the methods that consider either indoor images or outdoor images only. In addition, the effect of the loss function, which plays the role of classifying images into indoor or outdoor was tested and verified. Finally, a user test was conducted to compare the quality of the environment map created in this study with those created by existing research.

A Locally Adaptive HDR Algorithm Using Integral Image and MSRCR Method (적분 영상과 MSRCR 기법을 이용한 국부적응적 HDR 알고리즘)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1273-1283
    • /
    • 2022
  • This paper presents a locally adaptive HDR algorithm using the integral image and MSRCR for LDR images with inadequate exposure. There are two categories in controlling the dynamic range, which are global and local tone mappings. Since the global ones are relatively simple but have some limitations at considering regional characteristics, the local ones are often utilized and MSRCR is a representative method. MSRCR gives moderate results, but it requires lots of computations for multi-scale surround Gaussian functions and produces the Halo effect around the edges. Therefore, in order to resolve these main problems, the proposed algorithm remarkably reduces the computation of the surrounds due to the use of the integral image. And a set of variable-sized windows is adopted to decrease the Halo effect, according to the type of pixel's region. In addition, an offset controlling function is presented, which is mainly affected to the subjective image quality and based on the global input and the desired output means. As the results, the proposed algorithm no more use Gaussian functions and can reduce the computation amount and the Halo effect.

Hybrid Tone Mapping Technique Considering Contrast and Texture Area Information for HDR Image Restoration (HDR 영상 복원을 위해 대비와 텍스쳐 영역 정보를 고려한 혼합 톤 매핑 기법)

  • Kang, Ju-Mi;Park, Dae-Jun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.496-508
    • /
    • 2017
  • In this paper, we propose a Tone Mapping Operator (TMO) that preserves global contrast and precisely preserves boundary information. In order to reconstruct a High Dynamic Range (HDR) image to a Low Dynamic Range (LDR) display by using Threshold value vs. Intensity value (TVI) based on Human Visual System (HVS) and contrast value. As a result, the global contrast of the image can be preserved. In addition, by combining the boundary information detected using Guided Image Filtering (GIF) and the detected boundary information using the spatial masking of the Just Noticeable Difference (JND) model, And improved the perceived image quality of the output image. The conventional TMOs are classified into Global Tone Mapping (GTM) and Local Tone Mapping (LTM). GTM preserves global contrast, has the advantages of simple implementation and fast execution time, but it has a disadvantage in that the boundary information of the image is lost and the regional contrast is not preserved. On the other hand, the LTM preserves the local contrast and boundary information of the image well, but some areas are expressed unnatural like the occurrence of the halo artifact phenomenon in the boundary region, and the calculation complexity is higher than that of GTM. In this paper, we propose TMO which preserves global contrast and combines the merits of GTM and LTM to preserve boundary information of images. Experimental results show that the proposed tone mapping technique has superior performance in terms of cognitive quality.

HDR Tone Mapping Using Belief Propagation (신뢰도 전파를 이용한 HDR 영상의 동적 영역 압축)

  • Lee, Chul;Kim, Chang-Su
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.267-268
    • /
    • 2007
  • A dynamic range compression algorithm using Markov random field (MRF) modeling to display high dynamic range (HDR) images on low dynamic range (LDR) devices is proposed in this work. The proposed algorithm separates foreground objects from the background using the edge information, and then compresses the color differences across the edges based on the MRF modeling. By minimizing a cost function using belief propagation, the proposed algorithm can provide an effective LDR image. Simulation results show that the proposed algorithm provides good results.

  • PDF

Image based Relighting Using HDRI Enviroment Map & Progressive refinement radiosity on GPU (HDRI 환경맵과 GPU 기반 점진적 세분 래디오시티를 이용한 영상기반 재조명)

  • Kim, Jun-Hwan;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2007
  • Although radiosity can represent diffuse reflections of the object surfaces by modeling energy exchange in 3D space, there are some restrictions for real-time applications because of its computation loads. Therefore, GPU(Graphics Processing Unit) based radiosity algorithms have been presented actively to improve its rendering performance. We implement the progressive refinement radiosity on GPU by G. Coombe in 3D scene that is constructed with HDR(High Dynamic Range) radiance map. This radiosity method can generate a photo-realistic rendering image in 3D space, where the synthetic objects were illuminated by the environmental light sources. In the simulation results, the rendering performance is analyzed according to the resolution of the texel in the environmental map and mipmaping. In addition, we compare the rendering results by our method with those by the incremental radiosity.

  • PDF

HDR Video Reconstruction via Content-based Alignment Network (내용 기반의 정렬을 통한 HDR 동영상 생성 방법)

  • Haesoo Chung;Nam Ik Cho
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2023
  • As many different over-the-top (OTT) services become ubiquitous, demands for high-quality content are increasing. However, high dynamic range (HDR) contents, which can provide more realistic scenes, are still insufficient. In this regard, we propose a new HDR video reconstruction technique using multi-exposure low dynamic range (LDR) videos. First, we align a reference and its neighboring frames to compensate for motions between them. In the alignment stage, we perform content-based alignment to improve accuracy, and we also present a high-resolution (HR) module to enhance details. Then, we merge the aligned features to generate a final HDR frame. Experimental results demonstrate that our method outperforms existing methods.

A Color Correction Method for High-Dynamic-Range Images Based on Human Visual Perception (인간 시각 인지에 기반을 둔 높은 동적폭을 갖는 영상 보정 방법)

  • Choi, Ho-Hyoung;Song, Jae-Wook;Jung, Na-Ra;Kang, Hyun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1027-1038
    • /
    • 2015
  • For last several decades, the color correction methods have been proposed for HDR(high dynamic range) images. However, color distortion problems take place after correcting the colors such as halos, dominant color as well known. Accordingly, this article presents a novel approach in which the method consists of tone-mapping method and cone response function. In the proposed method, the tone mapping method is used to improve the contrast in the given HDR image based on chromatic and achromatic based on the CIEXYZ tristimulus value, expressed in c/m2. The cone response function is used to deal with mismatch between corrected image and displayed image as well as to estimate various human visual effects based on the CMCAT2000 color appearance model. The experimental results show that the proposed method yields better performance of color correction over the conventional method in subjective and quantitative quality, and color reproduction.