• Title/Summary/Keyword: HDR 10

Search Result 159, Processing Time 0.022 seconds

High Dynamic Range Imaging Using Inverted Local Patterns with Saturation Compensation (포화도 보상의 반전 지역 패턴을 이용한 HDR 영상화)

  • Kwon, Oh Seol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.714-717
    • /
    • 2018
  • This paper presents a method of HDR imaging with adaptive saturation compensation for brightness change. The saturation of HDR images were lighten on dark region because conventional HDR methods have focused on brightness change. Therefore, the proposed HDR method compensates saturation adaptively according to brightness change. For experiments of several images, the proposed algorithm is superior to conventional HDR methods qualitatively and quantitatively in terms of color saturation.

Reconstruction of HDR Environment Map using a Single LDR Environment Map (단일 LDR 환경 맵을 이용한 HDR 환경 맵 복원)

  • Yoo, Jae-Doug;Cho, Ji-Ho;Lee, Kwan H.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.550-553
    • /
    • 2010
  • 최근 영화, 광고 그리고 증강현실과 혼합현실 등 다양한 분야에서 실제 영상에 가상의 객체를 합성하는 기법이 자주 사용되고 있다. 보다 사실적인 합성 결과를 생성하기 위해서는 실제 배경영상의 광원정보를 그대로 적용해야 한다. 이러한 실 세계의 광원 정보를 이용하기 위해서는 HDR(High Dynamic Range) 영상을 생성해야 한다. 일반적으로 HDR 영상을 생성하기 위해서는 고가의 HDR 카메라를 사용하거나 LDR(Low Dynamic Range) 카메라를 사용하여 노출 시간을 달리한 일련의 LDR 영상을 촬영하여 이를 기반으로 HDR 영상을 생성해야 한다. 본 논문에서는 이러한 단점을 보완하기 위해 한 장의 LDR 환경 맵을 HDR 환경 맵으로 복원하는 방법에 대해 제안한다. 제안하는 방법을 통해 LDR 환경 맵을 HDR 환경 맵으로 복원할 수 있으며 결과에서 볼 수 있듯이 HDR 영상을 이용했을 때와 유사한 렌더링 결과를 생성할 수 있다.

Acquisition of HDR image using estimation of scenic dynamic range in images with various exposures (다중 노출 복수 영상에서 장면의 다이내믹 레인지 추정을 통한 HDR 영상 획득)

  • Park, Dae-Geun;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.10-20
    • /
    • 2008
  • Generally, to acquire an HDR image, many images that cover the entire dynamic range of the scene with different exposure times are required, then these images are fused into one HDR image. This paper proposes an efficient method for the HDR image acquisition with small number of images. First, we estimated scenic dynamic range using two images with different exposure times. These two images contain the upper and lower limit of the scenic dynamic range. Independently of the scene, according to varied exposure times, similar characteristics for both the maximum gray levels in images that include the upper limit and the minimum gray levels in images that include the lower limit are identified. After modeling these characteristics, the scenic dynamic range is estimated using the modeling results. This estimated scenic dynamic range is then used to select the proper exposure times for the acquisition of an HDR image. We selected only three proper exposure times because entire dynamic range of the cameras could be covered by three dynamic range of the cameras with different exposure times. To evaluate the error of the HDR image, experiments using virtual digital camera images were carried out. For several test images, the error of the HDR image using proposed method was comparable to that of the HDR image which utilize more than ten images for the HDR image acquisition.

Generating Dynamic Virtual Light Sources by Interpolating HDR Environment Maps (HDR 환경 맵 보간을 이용한 동적 가상 조명 생성)

  • Hwang, Gyuhyun;Park, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1399-1408
    • /
    • 2012
  • The light source is an important visual component that empirically affects the color and illumination of graphic objects, and it is necessary to precisely store and appropriately employ the information of all light sources in the real world in order to obtain photo-realistic composition results. The information of real light sources can be accurately stored in HDR environment maps; however, it is impossible to create new environment maps corresponding to dynamic virtual light sources from a single HDR environment map captured under a fixed lighting situation. In this paper, we present a technique to dynamically generate well-matched information for arbitrarily selected virtual light sources using HDR environment maps created under predefined lighting position and orientation. Using the information obtained from light intensity and distribution analysis, our technique automatically generates HDR environment maps for virtual light sources via image interpolation. By applying the interpolated environment maps to an image-based lighting technique, we show that virtual light can create photo-realistically rendered images for graphic models.

Performance Analysis of HDR-WPAN System with Concatenated Space-Time Diversity Scheme (연접 시공간 다이버시티 기법을 적용한 HDR-WPAN 시스템의 성능 분석)

  • Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.288-295
    • /
    • 2007
  • In this paper, we proposed two systems, STTC scheme and STBC-TCM scheme, to enhance the reliability of HDR-WPAN system and analyzed BER(bit error rate) performance of the proposed systems over the slow fading channel. The proposed systems had a diversity gain and coding gain without increasing an additional channel bandwidth. However, in terms of reliability, about 4dB improvement at BER=$10^{-4}$ was obtained by the STBC-TCM scheme. In addition, HDR-WPAN system with STBC-TCM scheme had a linear rise in system complexity of ML(maximum likelihood). From the results, STBC-TCM scheme was more appropriate to improve the reliability and channel efficiency and to reduce complexity of HDR-WPAN system.

  • PDF

A Study on The Performance Improvement of HDR-WPAN System Using Turbo Code (Turbo Code를 사용한 HDR-WPAN 시스템의 성능개선 방안 연구)

  • Kang, Chul-Gyu;Kim, Jae-Young;OH, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, we propose performance improvement algorithm for high data rate wireless personal area network (HDR-WPAN) system using turbo code. Turbo code increase detection delay and computation according to iterate counts. However, turbo code has been shown to be very close th the Shanon limit, can be classified as a block-based error correction code. Turbo code has gain about E$_b$/N$_o$=5.8dB at 10$^{-4}$ in the multipath indoor channel. In the result, HDR-WPAN system adopted turbo code has reliable communication by low power.

  • PDF

Performance Analysis of HDR-WPAN System under Indoor Radio Channel (실내 무선채널에서 HDR-WPAN 시스템의 성능 분석)

  • Gang, Cheol-Gyu;O, Chang-Heon
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.277-283
    • /
    • 2005
  • In this paper, the performance of high data rate-wirelesss personal area network(HDR-WPAN) system is analyzed under multi-path indoor channel. In the analysis, Saleh and Valenzuel channel model is used for the multi-path indoor channel. From the results, HDR-WPAN system has reliability of 10-5 at Eb/No = 18.5dB in multi-path indoor channel. It is a suitable performance for high data rate personal area network applications.

  • PDF

HVS-Aware Single-Shot HDR Imaging Using Deep Convolutional Neural Network (시각 인지 특성과 딥 컨볼루션 뉴럴 네트워크를 이용한 단일 영상 기반 HDR 영상 취득)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.369-382
    • /
    • 2018
  • We propose a single-shot high dynamic range (HDR) imaging algorithm using a deep convolutional neural network (CNN) for row-wise varying exposures in a single image. The proposed algorithm restores missing information resulting from under- and/or over-exposed pixels in an input image and reconstructs the raw radiance map. The main contribution of this work is the development of a loss function for the CNN employing the human visual system (HVS) properties. Then, the HDR image is obtained by applying a demosaicing algorithm. Experimental results demonstrate that the proposed algorithm provides higher-quality HDR images than conventional algorithms.

The Analysis of HDR Tone Mapping Algorithm (HDR 영상 톤 매핑 알고리즘 분석)

  • Park, Jae Hyeon;Kim, Jeong Hyeon;Cho, Sung In
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.242-245
    • /
    • 2019
  • 실제 인간의 눈이 가장 어두운 물체와 가장 밝은 물체 사이의 차이를 인식하는 동적 영역의 범위는 1014(cd/㎡)이다. 이를 디지털 영상으로 가능한 최대로 표현하기 위해 HDR 영상을 생성하는 다양한 기술이 개발되었다. 하지만, 기존 디스플레이 장치의 동적 영역은 103(cd/㎡)로 사람의 동적 영역에 비해 상대적으로 작은 동적 영역을 가진다. 따라서, HDR 영상을 LDR 디스플레이에 효과적으로 표현하기 위해서는 HDR 영상과 시각적으로 유사한 영상을 생성하는 방법인 톤 매핑 기법 (Tone Mapping Operator: TMO)이 필수적이다. 본 논문에서는 HDR 영상을 LDR 디스플레이에 표현하기 위해 개발된 톤 매핑 기법과 톤 매핑 기법의 품질을 평가하는 방법을 소개하고, 각각의 톤 매핑 기법의 품질 점수를 비교한다.

  • PDF

Ghost-free High Dynamic Range Imaging Based on Brightness Bitmap and Hue-angle Constancy (밝기 비트맵과 색도 일관성을 이용한 무 잔상 High Dynamic Range 영상 생성)

  • Yuan, Xi;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.111-120
    • /
    • 2015
  • HDR(High dynamic range) imaging is a technique to represent a dynamic range of real world. Exposure fusion is a method to obtain a pseudo-HDR image and it directly fuses multi-exposure images instead of generating the true-HDR image. However, it results ghost artifacts while fusing the multi-exposure images with moving objects. To solve this drawback, temporal consistency assessment is proposed to remove moving objects. Firstly, multi-level threshold bitmap and brightness bitmap are proposed. In addition, hue-angle constancy map between multi-exposure images is proposed for compensating a bitmap. Then, two bitmaps are combined as a temporal weight map. Spatial domain image quality assessment is used to generate a spatial weight map. Finally, two weight maps are applied at each multi-exposure image and combined to get the pseudo-HDR image. In experiments, the proposed method reduces ghost artifacts more than previous methods. The quantitative ghost-free evaluation of the proposed method is also less than others.